
Record and Reward Federated Learning
Contributions with Blockchain

Ismael Martinez*,1, Sreya Francis*,2, Abdelhakim Senhaji Hafid1

1Department of Computer Science and Operations Research
University of Montreal

2Montreal Institute of Learning Algorithms
University of Montreal

Abstract—Although Federated Learning allows for partici-
pants to contribute their local data without it being revealed, it
faces issues in data security and in accurately paying participants
for quality data contributions. In this paper, we propose an EOS
Blockchain design and workflow to establish data security, a novel
validation error based metric upon which we qualify gradient
uploads for payment, and implement a small example of our
blockchain Federated Learning model to analyze its performance.

Index Terms—blockchain, Federated Learning, distributed ma-
chine learning, class sampled validation error

I. INTRODUCTION

In today’s data market, users generate data in various forms
including social media behaviour, purchasing patterns, and
health care records, which is then collected by firms and used
either for sale or for in-house data analytics and machine
learning. As a result, each of us is giving away a personal
resource for no reward. In addition, these organizations have
full access to our data, which can be a major invasion of
privacy depending on the type of data collected. One proposed
method of mitigating this issue of ownership and privacy when
the purpose of the data is proprietary machine learning is
Federated Learning [1] [2], where an owner sends the training
model to users who train on their local data and send back
only the updated weights of the model. By doing this, a user
never unveils his data to the owner, and keeps ownership of his
data. A secondary result of this type of training is that users
with sensitive data such as health care data are more likely to
partake in the training, meaning the owner also receives more
data to use for training.

There still remains the concern of handing out our data, a
useful resource to organizational training models, for free. We
propose the use of blockchain to facilitate the uploading and
tracking of updates from users, as well as rewarding users for
the data they used in computation. An additional benefit to
using a blockchain is that it renders the updates immutable
and thus secure. The combination of data privacy and security
coupled with rewards for uploads renders this system desirable
to a larger scope of people, allowing organizers to collect a
larger pool of data from a wider set of users.

*Equal contribution

Fig. 1: As described in the proposal for BlockFL [3], the
architecture of BlockFL compared to ”Vanilla” Federated
Learning [2].

BlockFL [3] uses blockchain to reward users for their local
updates proportional to how many local data points are used as
shown in Fig. 1. The payment to devices is left to the miner to
pay ”out-of-pocket”, which is not a lasting solution if miners
pay devices more than they are rewarded for blocks. This
device reward benefits an honest node; however, this value
may be inflated by a malicious node seeking higher reward.

DeepChain [4] proposes an incentive-based blockchain
mechanism to reward honest participants and penalize dis-
honest participants. The blockwise-BA consensus protocol
proposed relies on cryptographically selecting a worker to
create a block which is validated by a committee; this method
relies on choosing an honest committee, and for the random
algorithm to be negligibly close to perfectly random, both
issues which may not be true in practice.

Kurtulmus and Daniel [5] proposed an Ethereum blockchain
implementation of machine learning to reward users for pro-
ducing trained models for organizers. Given an organizer’s
published dataset and evaluation function, users compete to
produce the first or the best training model that maximizes
this evaluation function. One large problem that arises with this
system is that all model evaluations are done on the blockchain
which yields large gas costs; many users must each pay gas for
their models to be evaluated, however only one or two users
are paid out. Users needing to pay large gas prices in addition
to effort and time into building and training a machine learning

model for submission without a guarantee of repayment does
not yield a sustainable system.

Another study [6] looks into Distributed Machine Learning
and Federated Learning with an Ethereum blockchain reward
based on the evaluation of the trained model. Participants train
a global model with local data and upload the model parame-
ters via IPFS; if the evaluation of the uploaded model passes a
predefined Minimum Acceptable Fitness Rate (MAFR) thresh-
old, the participant is rewarded in Ether. Although it is stated a
participant is rewarded based on the value of their contribution,
both the evaluation and the amount are not well defined nor
tested, and a public knowledge of a low MAFR threshold could
lead to participants purposely contributing their data in smaller
batches across more training rounds to maximize reward.

Similarly, [7] attempts to make a distributed machine
learning marketplace and Federated Learning training system
with users rewarded in DML tokens through Ethereum Smart
Contracts. The choice to use a proprietary token with the
sole purpose of interacting, buying, and selling within the
system may be a deterrent to users seeking a more stable
cryptocurreny.

The limitations of the related work can be summarized as
inaccuracy or inefficiency in rewarding user contributions, and
lack of scalability of data on the blockchain.

The main contributions of this paper can be summarized as
follows:
• Merging Federated Learning with blockchain to ensure

both data privacy [1] [2] and security, and thus motivate
more user contributions.

• Using EOS Blockchain and IPFS to record uploaded
updates in a sclalable manner and reward users based
on training data cost.

• Proposal of a Class-Sampled Validation-Error Scheme
(CSVES) for validating and rewarding only valuable
uploaded updates via Smart Contracts.

• Simple implementation with Python and Hyperledger
Fabric to verify the feasibility of the system, with plans
to implement a PoC in EOS at a later date.

The rest of this paper is organized as follows. In Section II,
we propose an architecture for achieving Federated Learning
with an EOS Blockchain. In Section III, we implement a
version of our solution with assumptions using both Python
and Hyperledger Fabric. In Section IV, we look at future
work in research and experimentation. Finally, we conclude
the paper in Section V.

II. PROPOSED DESIGN AND ARCHITECTURE

Taking related work into consideration, we choose to make
adjustments to improve privacy, access control and storage; the
architecture and workflow of the proposed system are shown
in Fig. 2 and 3.

The following assumptions are made regarding the devices
and data in the system.
• A smartphone device has enough storage to store the

current global model during training.

Fig. 2: The workflow of calculating and uploading update
values δ for validation, as explained in Section II-C.

Fig. 3: The continued workflow of validating the δ via Smart
Contracts and paying successful candidates, as explained is
Section II-C.

• A smartphone device does not necessarily have enough
extra storage to store the entire blockchain.

• The training data for the model is homogeneous across
different devices.

A. System and Blockchain Architecture

For our system design, we are using EOS Blockchain,
a public blockchain with no transaction fees which further
incentivizes its use by users [9] [10]. EOS uses a set of
21 producers to create blocks simultaneously, creating an
extremely scalable blockchain able to process millions of
transactions per second. In our system, the model owner O has
full liability of payment for the device and producer work, as
opposed to devices D needing to pay for their transactions [5],
or miners to reward devices out-of-pocket [3].

Our base implementation of Federated Learning is built with
smartphone devices in mind who act as the users performing
the training and sending in δ values. The model owner O
defines the initial model and distributes the reward.

A transaction in our system carries the information needed
for the Federated Learning process. For a user Di and a global
model Tk, we define these transaction parameters below.

The gradient upload δi is the binary representation of the
weight updates to the model. For a received model Tk, T i

k

is the result of training the model on local data di and our
gradient is the difference δi = T i

k − Tk. Regardless of what
data is used, the value of δi will be quite large. For example,
the single channel MNIST image data [11] is 1 MB per update
δi. The way we record these values within the blockchain is to

TABLE I: Parameters required in a transaction upload from
device Di.

Parameter Purpose Size Section
TxID Unique identifier of the

transaction
256 bits

ai Address of device Di 160 bits
H(δi) SHA256 Hash of binary

representation of training
model weight updates

˜256 bits Section II-C

ni The data cost – number of
data points used to calculate
the model update

16 bits Section II-C

vi The current version k of Tk 16 bits Section II-D
v, r, s Signature of hash of the

transaction
65 bits

store signed transactions in a table off-chain within the IPFS
file system [12], and record only the hash of the gradient value
H(δi) on-chain. This process is shown in Fig. 5. This means
that when the Smart Contract validates the format of δ, it must
use an oracle to access the value in the table off-chain. When
the owner updates the model, it must grab the gradients from
this same off-chain table by querying IPFS for the document
with the same on-chain gradient hash.

The data cost |di| = ni of Di is the number of datapoints
used for training the model Tk to obtain δi. The amount
rewarded to Di for its gradient δi is proportional to the data
cost ni. For a simulation of users training on the MNIST
dataset, we can see in Fig. 4 that the number of datapoints is
approximately linear to the training time, justifying our choice
to reward users proportional to number of datapoints used as
it has a strong linear relationship with training effort.

Fig. 4: Simulation of 500 users training with the MNIST
dataset with number of points in [320, 60,000] shows a strong
linear relationship between number of points used for training
and training time.

The version of the model being used is the integer value
k of the current Global Model Tk. If the uploaded version vi

Fig. 5: A device uploads the gradient value to an off-chain
table within the IPFS file system where it is later accessed by
the Smart Contract for validation, and the owner for gradient
aggregation. Only the hash of the gradient remains on-chain.

does not match the current version k, either the update value
δi needs to be adjusted, or the value δi should be dropped.

The address ai is the network address of the device Di

where payment is to be sent.
In addition to these values, each transaction has a trans-

action id to uniquely identify a transaction, and a signature
created by the user’s private and public key pair and denoted
by {v, r, s} values. A summary of the transaction values is
available in Table I.

B. Smart Contracts

We propose the creation and usage of three Smart Contracts
in our system.
UploadGradient – This Smart Contract verifies that

every parameter as described in Table I is present in the
transaction. It compares the hash of the transaction update
value δi with the same value on the off-chain IPFS record
as per Fig. 5, ensures that the hashes are equal, that the true
value of δi follows the required size and format requirements
for Tk as set by O, and verifies the submitted version vi
is the same value as the last version value vk sent out by
O (Section II-A). Once a transaction is validated as being a
proper update transaction, the Smart Contract returns True.
Payment – Once a transaction from device Di ∈ D is

validated, this Smart Contract is triggered to send payment
proportional to the data cost ni to address ai. Since we are
using EOS, this payment would take the form of a EOS tokens
of which O has given prior approval to the Smart Contract to
transfer to devices.
FederatedLearning – This is the only Smart Con-

tract a user may call directly. This function forwards the
user’s transaction to the UploadGradient Smart Contract;
if True is returned, this function then makes a call to
Payment(). The parameters required by this function for
a device Di are H(δi), ni, vi and ai, and are forwarded to
calls to UploadGradient() and Payment().

C. System Design and Workflow

The kth model is calculated from applying all of the model
updates currently in the blockchain up to the kth block. We
define D to be the set of all devices and P to be the set of
all producers. As in Fig. 2, step (1), each device Di ∈ D has
a copy of Tk given to it by O, along with the current version
vk; this is defined as round k. We walk-through the process of
training the next model, validating the transactions and paying
the users, referring to Fig. 2 and 3.

For each device Di ∈ D upon receiving the kth model Tk,
(2) Di trains the model Tk off-chain using it’s local data di

of size ni to get an updated model T i
k. The gradient is then

calculated as δi = T i
k−Tk. (3) The values of δi, the size of the

dataset ni, the device address ai and the version vk are set as
parameters to the Smart Contract FederatedLearning()
together with a TxID and a digital signature. (4) The device
Di sends this transaction on-chain to any producer Pj to
which Di is connected. (5) Each producer Pj ∈ P adds the
transactions received by the devices to their transaction queue
(i.e., pending transactions) to be verified for Block k. (6) Each
producer executes each transaction in its queue, which involves
a call to FederatedLearning() to validate the user role,
then a call to UploadGradient() where details about each
transaction are validated, such as the correct format for δi, the
correct version vi, and that the address ai exists. (7a) Once
validated, this transaction is added to the next block; (7b) the
device Di ∈ D who submitted a valid transaction is rewarded
through a call to Payment() an amount proportional to the
data cost ni via the submitted address ai.

D. Global Model

The initial model T0 has all weights initialized to normally
distributed values with mean 0 and variance 1; therefore, we
define each weight w ∼ N (0, 1).

To calculate T1, the owner O applies the aggregate of all δi
updates from the blockchain where version vi = 1. We denote
the number of such updates by b1. We define wl as being the
lth weight in T0, and δi,l as the lth weight of the ith gradient
value; the training model will apply the update

wl ← wl + η · δ̄l = wl + η · 1

b1

∑
i=1,...,b1

δi,l

to each wl ∈ T0, where η is the learning rate [13].
Similarly, to calculate Tk+1, the owner O applies the update

wl ← wl + η · δ̄l = wl + η · 1

bk+1

∑
i=1,...,bk+1

δi,l

to each wl ∈ Tk . If the most recent version for which the
uploads have been aggregated is version K, then TK is known
as the Global Model.

E. Data Validity and Quality

The validation check we have defined earlier requires pro-
ducers to trust that the data cost value a device claims to
have used is correct. We propose a new concept of tailoring

Algorithm 1: Class-Sampled Validation-Error Scheme:
Device
Result: Hash(δ), vE
Parameter: Device D ∈ D
// Assign ci based on the number of

datapoints in class i
for i← 1 to p do

if |di| > 0 then
ci ← 1;

else
ci ← 0;

end
end
Send {c1, . . . , cp} to O;
// Await v from O
T ′k, vE ← (Tk,v);
// vE is the resulting validation error

vector from training
δ ← T ′k − Tk
Send Hash(δ), vE , and dataset size n to nearest Producer

a validation set to a device’s data breakdown which we will
call a Class-Sampled Validation Error Scheme (CSVES).

This proposed method, shown in Fig. 6, begins prior to
training. We define the set of all classes available as C =
{C1, C2, ..., Cp} for p classes. For a device D ∈ D, we define
the set CD as the set of all classes for which D has data.
Then, CD ⊆ C because there may exist a class Ci ∈ C
such that for all local datapoints d ∈ d, d /∈ Ci. D sends
the set CD to O and receives a validation set with datapoints
chosen only from the classes in CD from an off-chain dataset
belonging to O. Once received, D begins to train model Tk
with the local training dataset d and the received validation
set. During training, the model will intermittently apply the
validation set to the training model and record the validation
error; if the model is improving, we expect the validation
error to decrease. At the end of training, D will send the
validation errors alongside other parameters for the function
call UploadGradient(). We modify this function to look
at the general trend of the validation errors over training time;
if the validation errors are decreasing, we say δ is a valuable
and valid gradient update, and we reward D based on its data
cost n. The CSVES algorithm from the perspective of a device,
the owner and the producer are outlined in Algorithm 1, 2
and 3 respectively. Another method of verifying the validation
error can be done using a threshold τ set by O – this method
affects only the producer and is described in Algorithm 4. We
will hereby specify the CSVES variants of validating error
over trend and by threshold as CSVES-Tr and CSVES-Th
respectively.

This algorithm does not require any trust of the devices who
can inflate their data cost n for a higher reward; however, it
is possible for either a faulty gradient δ to appear valuable
and thus be rewarded, or for a valid gradient δ to have an

Algorithm 2: Class-Sampled Validation-Error Scheme:
Owner

Result: Vector {c1, . . . , cp}
Parameter: Vector {c1, . . . , cp}D, m
v ← empty vector size p;
for i← 1 to p do

if ci = 1 then
// Take a random sample of size m

from off-chain dataset for
class i

v[i]← randomSample(m, i);
end

end
Send v to D

Algorithm 3: Class-Sampled Validation-Error Scheme:
Producer - Error Trend

Result: Vector {c1, . . . , cp}
Parameter: Hash(δ), vE , n
// Determine if the overall trend of

the validation error is decreasing
Given the vector vE , determine the line of best-fit
y = β0 + β1x;

if β1 < 0 then
Send Payment(n) to D

end
.
Upload δ to the Blockchain.

increasing validation error if the datapoints used by D don’t
reflect the data in the received validation set and thus not be
rewarded.

The most obvious issue with CSVES is that it is only defined
here for classification problems; it would be useful to find
other similar schemes for tailoring validation sets based on
non-classification data. Simulation results in Table II show
that CSVES-Tr validates user data quality %60 of the time,
whereas Table III shows CSVES-Th validates proper data at
a near perfect rate for the given threshold τ = 0.1. Faulty

Algorithm 4: Class-Sampled Validation-Error Scheme:
Producer - Error Threshold

Result: Vector {c1, . . . , cp}
Parameter: Hash(δ), vE , n
// Determine if the final validation

error metric surpasses a threshold τ
Given the vector vE , determine if the last value
vE [−1] ≤ τ ;

if vE [−1] < τ then
Send Payment(n) to D

end
.
Upload δ to the Blockchain.

Fig. 6: Prior to training, a device D ∈ D sends a list of the
classes for which it has data, and receives a validation set
containing data from only those classes. Once the validation
set is received, training proceeds and the set of validation
errors throughout training is sent along with the gradient δ.

TABLE II: Simulation of valid data acceptance rates via
CSVES-Tr.

of Classes Instances Accepted % Accepted
1 8 0 %0.000
2 49 27 %55.102
3 122 81 %66.393
4 196 121 %61.135
5 266 108 %59.399
6 188 114 %60.600
7 110 64 %69.182
8 50 31 %62.000
9 11 7 %63.636

a Simulation of training 1000 instances on the MNIST
dataset with 5 epochs each of 1000 training points and
100 validation points.

data was simulated for in Table IV and Table V for CSVES-Tr
and CSVES-Th respectively; the acceptance rates for CSVES-
Tr and CSVES-Th average at %33 and %75 respectively,
suggesting the CSVES algorithm to be a good starting point
for developing a stronger data quality acceptance scheme, but
not a great approach on its own. Furthermore, this scheme does
not prove the data cost n of a user is correct, only that the data
itself is valuable enough to merit the requested reward. Similar
schemes based on a combination of validation error trend and
thresbhold should be explored to validate data quality, and
new schemes should be developed to prove the data cost n of
a user.

F. Restrictions on Users via Smart Contracts

As noted in [14] and [15], even when only uploading the
gradient it is still possible for the owner O or other parties
to infer a user’s data from the uploaded gradient. Although
we are using a public blockchain, neither the full gradients or
the training model are on the blockchain, keeping them both
hidden from the public. Training Model privacy is achieved
through the use of Paillier’s Cryptosystem, a homomorphic

TABLE III: Simulation of valid data acceptance rates via
CSVES-Th with τ = 0.1.

of Classes Instances Accepted % Accepted
1 9 5 %55.555
2 41 41 %100.000
3 112 112 %100.000
4 211 211 %100.000
5 240 238 %99.167
6 203 203 %100.000
7 119 119 %100.000
8 50 50 %100.000
9 13 12 %92.308

a Simulation of training 1000 instances on the MNIST
dataset with 5 epochs each of 1000 training points and
100 validation points.

TABLE IV: Simulation of faulty data acceptance rates via
CSVES-Tr.

of Classes Instances Accepted % Accepted
1 14 3 %21.429
2 44 9 %20.455
3 121 36 %29.752
4 194 54 %27.835
5 272 98 %36.029
6 191 75 %39.267
7 117 41 %35.047
8 35 20 %57.143
9 9 3 %33.333

a Simulation of training 1000 instances on the MNIST
dataset with 5 epochs each of 1000 training points and
100 validation points.

TABLE V: Simulation of faulty data acceptance rates via
CSVES-Th with τ = 0.1.

of Classes Instances Accepted % Accepted
1 11 2 %18.181
2 61 28 %45.902
3 122 88 %72.131
4 196 166 %84.694
5 240 212 %88.333
6 220 185 %84.091
7 111 102 %91.892
8 34 32 %94.118
9 5 5 %100.00

a Simulation of training 1000 instances on the MNIST
dataset with 5 epochs each of 1000 training points and
100 validation points.

encryption scheme commonly used in distributed machine
learning [4]; gradient privacy is achieved by uploading the
full gradient to an off-chain table on IPFS only accessible by
O as defined in Section II-A.

This blockchain system is intended to restrict the actions
taken by users participating in the Federated Learning process.
We define a member x of the blockchain as either a device
x ∈ D, a producer x ∈ P or the model owner x = O. The
only restriction we put is that O∩D = ∅, meaning O doesn’t
take part in the Federated Learning training process and none
of the devices take part in the model aggregation process.

To achieve this, we make use of Smart Contracts to
validate a user’s role against a set of rules prior to for-
warding its transaction to the appropriate Federated Learn-
ing Smart Contracts. In this Smart Contract we denote
as FederatedLearning(), we define the owner O as
not being able to submit any transactions that call the
UploadGradient() Smart Contract, thus impeding it from
contributing its own data to the process. Furthermore, we
define a rule to limit a device’s only action as submitting
a transaction with a call to UploadGradient(). Since it
is left to the owner O to trigger the next training round, O
retains control of deciding for how many rounds the training
takes place.

We also want to restrict each device from uploading more
than one gradient to the model for each version vk. One
method is to assign a nonce to each user upload per version
in FederatedLearning() to keep track of whether a user
has already uploaded for a particular version. In practice, we
want a device to upload the gradient obtained from their best
dataset; due to our restriction, it is suggested that devices
are confident with their off-chain dataset and training process
before uploading their one and only transaction for round k.

III. PROOF OF CONCEPT

We made a small implementation of our design in order to
test out the general workflow in practice. For this implemen-
tation, we used 15 training rounds of 10 local Device partic-
ipants who performed the model training off-chain in Python,
and sent transactions to the Hyperledger Fabric blockchain.
Future plans include a larger implementation of this system
with EOS blockchain.

The Proof of Concept seeks to answer whether a blockchain
could work with Federated Learning implementation in Python
to record and reward gradient uploads; since we’re using
a REST API to interact with Hyperledger Fabric, then any
programming language that supports API calls can interact
with our blockchain system.

A. Hyperledger Fabric - REST API

For this implementation on Hyperledger Fabric we made use
of Hyperledger Fabric Composer where we defined the files
model.cto – where we define the participants, assets and
transactions, logic.js – where we define the Smart Con-
tract chain code, and permissions.acl – where we define
the ruleset restricting/allowing the actions of the participants.

The model.cto defines the participants, assets, and func-
tions of our system. We can have multiple Device partic-
ipants, which make up the users in our Federated Learning
process. Although training of the model occurs off-chain, we
have a single instance of a TrainingModel asset which
we use to keep track for which version we are currently
uploading gradient values. A Gradient asset is linked to
a Device participant, and has the hash of the gradient as in
Fig. 5, the current training version, and the dataCost claimed
by the Device participant. The Token asset is also linked
to a Device participant, has the current training version,
and a value which is equal to the claimed dataCost. The
UploadGradient() transaction is the parameter descrip-
tion of our Smart Contract, requires a Device participant
instance and the TrainingModel asset instance, and has
the hash, dataCost, and version parameters which we’ve seen
in the other assets.

The logic.js file is the chaincode of our application
which is HyperLedger Fabric’s version of a Smart Contract
written in pure JavaScript. In this function, we have decided
to combine the Payment() functionality within the same
UploadGradient() function – the script validates the sub-
mitted parameters, creates the necessary assets, and rewards
the user for their upload. The script follows these steps:
UploadGradient(tx.{Device, TrainingModel,

version, hash, dataCost})
1) Validation

a) Verify that the uploaded tx.version is equal to the
current tx.TrainingModel.version attribute.

2) Create new Gradient
a) Create a blank asset of type Gradient with

unique id <tx.Device.deviceId tx.version>.
b) Gradient.device ← tx.Device
c) Gradient.version ← tx.version
d) Gradient.hash ← tx.hash

3) Pay user via a Token
a) Create a blank asset of type Token with unique

id tx.Device.deviceId_tx.version.
b) Token.value ← tx.dataCost
c) Token.Device ← tx.Device

Within Hyperledger Fabric, the deviceId of a Device is
used in the same way as the address ai from our design. We
leave it for future work to both implement and test the Class-
Sample Validation Error Scheme and to use an Oracle to check
the off-chain format of the gradient δ, both as part of the
Validation phase.

Our permission.acl file defines the allowance of
participants of which actions they can perform. We set the
following rules:

• Devices have no access to create or modify
Gradient assets unless submitting a transaction
to UploadGradient()

• Devices have no access to create or modify Token assets
unless submitting a transaction to UploadGradient()

• All participants have READ access to the all Gradient
assets.

This ruleset ensures that participants only see the information
they need to see, which are at most all the gradients being
uploaded; they do not need to see the rewarded tokens.

To run and interact with the blockchain locally, we deployed
the blockchain with a local REST API. Then, we could
perform off-chain training and data storage with Python while
sending calls to the API to read the blockchain data, getting
the list of active participants for whom we need to train, and
posting transactions with calls to UploadGradient().

B. Implementation Worflow

We have Python and Hyperledger Fabric working together
to achieve Federated Learning using the following workflow.

1) a) Create the Initial Model in Python as per Sec-
tion II-D.

b) Create the TrainingModel asset in Hyperledger
Fabric with version: 0.

2) a) Create D local devices in Python, each with a
unique id.

b) Create D Device participants with the same id
values as in Python.

3) For version v = k, k ∈ {0, ..., V }, perform the Federated
Learning Process:

for D ∈ D do
T ′k ← train(Tk)
δ ← T ′k − Tk
· Write δ off-chain with version and dataCost
· Upload δ, version and dataCost to Hyperledger
Fabric, creating a Gradient asset and a Token
asset

end for
4) Average all gradients with version v = k to obtain δ̄k.
5) Apply the federated aggregation on Tk to obtain

Tk+1 ← Tk + η · δ̄k

where η ∈ (0, 1] is the aggregation factor.
6) Increment TrainingModel.version v ← k + 1 on

Hyperledger Fabric.

C. Results

For n = 10 clients each with an uneven and overlapping
split within the range of 0.5 to 0.1 of the MNIST dataset,
and running 15 rounds, we obtain the accuracy metrics of
the Global Model shown in Fig. 7. We can see from Fig. 7b
that the model improves but quickly plateau with small dips
in accuracy without deviating significantly from a centralized
approach in Fig 7a. This confirms that the blockchain does
not interfere with the Federated Learning process, while
recording and rewarding devices for their data in Hyperledger
Fabric which we can easily view from the browser’s REST
API dashboard. This plateau could be due to the lack of
diversity of the devices per round, or the lack of diversity in
the datasets of each device per round. Ideally, the Federated

(a) Centralized dataset. (b) Decentralized dataset over 10 de-
vices.

Fig. 7: Graphical results of training accuracy over 15 versions
of a (a) centralized dataset (b) decentralized dataset over 10
devices.

Learning training model would see new data every round;
this type of experimentation is left for future work. Another
reason may be that the number of steps taken by the training
model is not optimal; we attempted to make every device
train the same way, fixing the number of training iterations to
do so. The small dips in accuracy could be due to over-fitting
on the part of each device as the model become more
accurate. For these two reasons, more optimal methods of
enforcing a standard training process to avoid over-fitting
and to reach training optimization are left for future work [16].

IV. FUTURE WORK

Moving forward, further implementation, testing and analy-
sis of variations on CSVES are left as future work to evaluate
whether CVES can be altered to be a more accurate scheme
for determining the quality or usefulness of local data used for
training the model. We also plan to investigate other validation
schemes that can accurately determine how much payment a
gradient upload should be rewarded, either based on verified
number of data points or on evaluated data model improve-
ment. Finally, we have acknowledged the value of having a
standardized form of training such that two devices with the
same data calculate the same gradients; such a standard will
lead to consistency in uploaded results and fairness in rewards.

V. CONCLUSION

In this proposal, we addressed the problems of data privacy,
security, and fair reward in distributed machine learning using
blockchain and Federated Learning. An in-depth workflow was
presented for scalable recording and rewarding of gradients
using a combination of blockchain and off-chain databases
of records. We have also proposed CSVES to validate and
verify gradients to determine a reasonable device reward.
We implemented a Proof of Concept with a small set of
clients and rounds to demonstrate that the blockchain does
not interfere with the federated learning aggregation, while
limiting the number of uploads and validating the claimed
data cost per device. Finally, we composed a list of aspects of
Federated Learning and Blockchain that require more in-depth

study for implementation as part of future work. With the
proposed system, individuals benefit by retaining ownership
and receiving incentives for their data, and model owners
benefit from access to a larger and more diverse set of client
data, leading to more robust and higher performing Machine
Learning models.

REFERENCES

[1] J. Koneny, H. B. McMahan, F. X. Yu, P. Richtrik, A. T. Suresh, and
D. Bacon.“Federated learning: Strategies for improving communication
efficiency”, arXiv preprint arXiv:1610.05492, 2016.

[2] B. McMahan and D. Ramage, “Federated Learning: Collaborative ma-
chine learning without centralized training data”, Google Research Blog,
2017.

[3] H. Kim, J. Park, M. Bennis, and S.-L. Kim. “On-device feder-
ated learning via blockchain and its latency analysis”, arXiv preprint
arXiv:1808.03949, 2018.

[4] J. Weng, J. Weng, J. Zhang, M. Li, Y. Zhang, and W. Luo, “Deepchain:
Auditable and privacy-preserving deep learning with blockchain-based
incentive”, Cryptology ePrint Archive, Report 2018/679, 2018

[5] B. Kurtulmus and K. Daniel. “Trustless machine learning con-
tracts;evaluating and exchanging machine learning models on the
ethereum blockchain”, arXivpreprint arXiv:1802.10185, 2018.

[6] G. J. Mendis, M. Sabounchi, J. Wei, and R. Roche, “Blockchain as a
Service: An autonomous, privacy preserving, decentralized architecture
for Deep Learning”, arXiv preprint arXiv:1807.02515, 2018

[7] Decentralized Machine Learning, “Decentralized Machine Learning
White Paper”, https://decentralizedml.com, cited May 2019.

[8] H. B. McMahan, D. Ramage, K. Talwar, H. Zhang, “Learn-
ing differentially private language models without losing accuracy”,
arXiv:1710.06963, 2017.

[9] I. Grigg, “EOS - An introduction’, Whitepaper iang.org/papers/
EOSAnIntroduction.pdf, 2017.

[10] EOSIO.”Eos.io”. technicalwhitePaperV2, https://github.com/EOSIO/
Documentation/blob/master/TechnicalWhitePaper.md, cited May 2019

[11] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web]”, IEEE Signal Processing Magazine
29(6):141142, 2012.

[12] J. Benet, “Ipfs-content addressed, versioned, p2p file system”, arXiv
preprint arXiv:1407.3561, 2014.

[13] T. Ben-Nun, T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis”, 2018.

[14] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private Federated
Learning: A Client Level Perspective”, arXiv:1712.07557, 2017.

[15] M. Fredrikson, S. Jha ,T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures”,
arXiv:1812.03288v1 [cs.LG], 2018.

[16] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, V. Shmatikov, “How to
backdoor federated learning”, arXiv preprint arXiv:1807.00459v2, 2018.

