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Abstract—Mobile crowdsensing (MCS) is a promising
paradigm of large-scale sensing. A group of mobile users are
recruited with their smart devices to accomplish various sensing
tasks in specific areas. The mobility and intelligence of mobile
users enable MCS to achieve a sufficient coverage ratio of
sensing tasks or areas. Currently, MCS is generally proposed
and implemented in a centralized way under a platform’s control.
However, this centralized structure is vulnerable to a single point
of failure. The platform’s failure leads to a shutdown of the entire
system. In addition, there is a trust issue between the platform
and mobile users because of computational transparency and
financial security. It is possible that the platform manipulates
the working process of MCS to obtain an improper gain. To
overcome these problems, we propose a decentralized MCS
framework named ChainSensing by leveraging blockchain. In
ChainSensing, mobile users interact with blockchain via smart
contracts to complete their operations, e.g., publishing sensing
tasks and submitting collected data. Since there are computation-
ally intensive problems in ChainSensing, e.g., path planning, path
selection, and reward determination, it is significantly expensive
to solve such problems in blockchain. Therefore, we propose
to leverage smart devices and computing oracles to solve these
problems. Specifically, we propose a heuristic algorithm to solve
the path planning problem in smart devices of mobile users;
we employ computing oracles to solve the path selection and
reward determination problems. Finally, we conduct numerical
simulations based on Ethereum to evaluate the performance of
ChainSensing.

Index Terms—Mobile crowdsensing, decentralized framework,
blockchain, smart contract.

I. INTRODUCTION

MOBILE crowdsensing (MCS), coined by Ganti et
al. [1], is a promising paradigm of data collection in

large-scale sensing [2]. A large number of mobile users are
recruited with their smart devices (e.g., smart phones, laptops,
and wearables) to accomplish various sensing tasks. Compared
with conventional methods of data collection (e.g., wireless
sensor networks), MCS is a cost-efficient method without
investing in infrastructure and maintenance. In addition, the
mobility of mobile users makes MCS suitable for different
distributions of sensing tasks, e.g., uniform and clustered dis-
tributions [3]. Due to these advantages, MCS has been widely
used in many applications, e.g., environment monitoring [4],
transportation management [5], and healthcare [6], to name a
few.
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Fig. 1. A centralized structure of MCS.

It is a challenge in MCS to assign sensing tasks to mobile
users, which is known as task allocation problem [7,8]. The
assignment has a significant influence on the performance,
e.g., task coverage and data quality. In addition, an incentive
mechanism is desired to attract mobile users to perform
sensing tasks in budget-limited applications, which is known
as incentive mechanism design [9,10]. Since mobile users have
different devices and skills, it is important to evaluate the
quality of collected data [11]. To address these problems, the
existing solutions generally leverage a centralized platform
to recruit mobile users, assign sensing tasks, evaluate data
quality, and determine rewards [3,12,13]. Fig. 1 shows a
centralized structure of MCS. Mobile users are classified as
data requesters and mobile workers according to their roles in
the sensing activity. The platform serves as an intermediary
between data requesters and mobile workers. The platform
first receives the information of sensing tasks and the cor-
responding deposits (rewards) from data requesters (step 1).
Next, the platform assigns sensing tasks to mobile workers
(step 2) and collects data from them (step 3). At last, the
platform sends collected data to data requesters and distributes
rewards to mobile workers (step 4). It is worth noting that all
these processes (e.g., flows of data and rewards) are under the
platform’s control.

Although the centralized structure enables the platform to
employ global optimization algorithms to efficiently address
these problems, there are several limitations in the centralized
MCS. First, the platform may be a single point of failure in
unexpected situations (e.g., network attacks). The platform’s
breakdown leads the whole system to stop working and thus
mobile users suffer losses. Second, there is a trust issue
between the platform and mobile users from the perspectives
of computational transparency and financial security. The lack
of computational transparency means that mobile users do not
know how the platform works. It is possible that the platform
manipulates the working process to obtain an improper gain.
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Fig. 2. A decentralized structure of MCS.

For instance, the platform can make a profit by receiving
higher deposits from data requesters and distributing lower
rewards to mobile workers. The financial security comes from
the fact that mobile users store their deposits (rewards) in the
platform.

To tackle these problems associated with the centralized
structure, blockchain is employed to build the decentralized
MCS [14,15]. Blockchain is introduced with Bitcoin (a digital
cryptocurrency) as a decentralized digital ledger in a peer-to-
peer (P2P) network [16]. This digital ledger records an in-
creasing number of transactions into blocks and then appends
the newly generated block to its previous block. These blocks
are linked one by one as a chain; this is the origin of its name
blockchain. Blockchain is maintained by independent nodes
based on consensus protocols, e.g., Proof-of-Work (PoW) and
Proof-of-Stake (PoS). Since blockchain is decentralized, trans-
parent, immutable, and secure, this technology is subsequently
extended to a wider scope of applications, e.g., Internet of
things (IoTs) [17], smart cities [18], and edge computing
[19]. Fig. 2 shows a decentralized structure of MCS based
on blockchain.

Although blockchain is already applied in MCS, some
key problems are not solved or clearly explained in existing
studies. For instance, one important problem is where the com-
putationally intensive problems of MCS (e.g., task allocation)
are solved (on-chain vs off-chain). To make the decentral-
ized MCS more practical, we propose a novel decentralized
MCS framework, named ChainSensing, based on blockchain
with smart contracts. In ChainSensing, mobile users create
their accounts (wallets) and interact with blockchain. Data
requesters can publish their sensing tasks and deposit rewards
to blockchain. Mobile workers who are willing to participate
in the sensing activity make their sensing plans based on the
task information. Since sensing tasks are generally location-
dependent, mobile workers need to carefully design their
travel paths as the sensing plans. We propose a heuristic
algorithm, which runs in the smart devices of mobile workers,
to plan travel paths. Next, mobile workers bid their sensing
plans to blockchain. A smart contract deployed in blockchain
makes a selection and determines rewards to the winners of
the selection. However, it is significantly expensive to solve
such computationally intensive problems in blockchain. For
instance, the fundamental unit of computation in Ethereum
is “gas” [20]. The more computation operations in a smart
contract, the more gas is needed to execute the smart contract.
In some cases, it is infeasible to execute a smart contract

if it needs more gas than the maximum amount of gas
set by Ethereum. To avoid the high cost in blockchain, we
employ computing oracles to solve these problems. Finally,
we evaluate our proposal via simulations on Ethereum.

The contributions of our paper can be summarized as
follows:
• We propose a novel decentralized MCS framework (i.e.,

ChainSensing), based on blockchain with smart contracts,
to solve the problems associated with the centralized
MCS (e.g., a single point of failure and trust issue).

• We take into account the locations of sensing tasks and
mobile workers in ChainSensing. We propose a heuristic
algorithm for mobile workers to select sensing tasks and
plan their travel paths.

• We employ computing oracles in ChainSensing to solve
the computationally intensive problems to avoid the high
cost in blockchain.

• We implement ChainSensing on Ethereum and conduct
simulations to evaluate its performance.

The remainder of this paper is organized as follows. Sec-
tion II presents the related work. Section III describes the
structure and working process of our proposed framework.
Section IV presents the solutions to our formulated problems.
Section V evaluates our proposal via simulations. Finally,
Section VI concludes the paper.

II. RELATED WORK

In this section, we overview the related work with respect
to centralized MCS and decentralized MCS.

A. Centralized MCS

In the centralized MCS, the platform has the information of
mobile users and sensing tasks, thus the centralized MCS is
able to meet different requirements with global optimization
methods. For instance, the centralized MCS performs satisfac-
torily in terms of task coverage and energy efficiency [8,21].

The coverage of sensing tasks or areas is one important
metric. It indicates the ability to successfully complete sensing
tasks by mobile workers. Data requesters are willing to keep
publishing their sensing tasks if the satisfactory coverage can
be achieved. However, the definition of task coverage is not
unique in different applications. Xiong et al. [22] proposed
a framework named iCrowd, which considers the spatio-
temporal coverage. To satisfy the requirement of task coverage,
iCrowd makes a prediction of mobile workers’ mobility based
on their historical records and then recruits mobile workers
according to the prediction. Zhang et al. [12] proposed a
framework called CrowdRecruiter. The task coverage in Crow-
dRecruiter is defined as the number of covered cell towers in
a time frame. Here, a cell tower is considered to be covered if
there is at least one mobile worker making a phone call with
it. By leveraging the prediction of phone calls, a small number
of mobile workers can achieve a satisfactory task coverage.

In addition to task coverage, energy efficiency is another im-
portant metric. There are two widely used paradigms to reduce
the energy consumption of MCS, i.e., piggyback crowdsensing
(PCS) and compressive crowdsensing (CCS). PCS reduces the
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energy cost by exploiting the phone opportunities (e.g., phone
calls) [23]. For instance, a smart phone can upload data in its
idle state in order to save the energy of screen lighting. EMC3

[24] and EEMC [25] are two frameworks based on PCS. In
EMC3 and EEMC, the energy consumption of data transfer
is reduced by leveraging the opportunities of phone calls. On
the other hand, CCS is based on compressive sensing [26,27].
CCS first collects data from some specific areas and time slots.
Next, it infers the data of unvisited areas to reconstruct a global
distribution of data. CCS reduces the energy cost by collecting
the minimum amount of data to meet the requirements of
sensing tasks. Liu et al. [28] proposed a framework named
UniTask, which is a CCS-based recovery scheme to improve
the overall system utility.

In the existing centralized MCS frameworks, many funda-
mental problems (e.g., task allocation) are efficiently solved.
However, there are some challenges associated with the cen-
tralized structure. Since the centralized platform plays a role
as the organizer, it can easily be the target of attackers. If the
platform fails, the whole system crashes and stops working.
This is known as a single point of failure. In addition, the
trust issue between the centralized platform and mobile users is
another challenge. Therefore, the decentralized MCS is desired
to tackle these challenges.

B. Decentralized MCS

Blockchain is introduced with Bitcoin [16] as a decentral-
ized digital ledger and then becomes a general technique to
implement decentralized applications in various areas, e.g.,
Internet of things (IoTs) [17], smart cities [18], and edge
computing [19]. Ethereum [29] is a typical representative of
blockchain platforms. There have been some studies on the
decentralized MCS based on blockchain, e.g., location privacy,
incentive mechanism, and data quality.

Information privacy is significantly important in MCS be-
cause mobile users need to provide their private information
(e.g., location) during the sensing activity. Zou et al. [14] pro-
posed a blockchain-based location-privacy-preserving frame-
work named CrowdBLPS. There are two stages of Crowd-
BLPS including a preregistration stage and a final selection
stage. Both two stages are deployed on blockchain via smart
contracts. To protect the location privacy of mobile users,
cloaked locations are used instead of exact locations. Jia et
al. [30] proposed a blockchain-based framework with a coded
method to protect location information (e.g., longitude and
latitude); the location information is coded to a fix-length
digital number.

A variety of incentive mechanisms are well-designed in
the centralized MCS [9]. Auction theory is widely used to
design the incentive mechanism. However, it is a challenge to
design the incentive mechanism in the decentralized MCS.
Kadadha et al. [31] proposed a decentralized framework,
named ABCrowd, based on blockchain and auction theory. In
ABCrowd, an incentive mechanism, called Repeated-Single-
Minded Bidder (R-SMB) auction, is designed to motivate
mobile users to participate in the sensing activity. ABCrowd is
implemented and deployed on a private Ethereum blockchain.

Hu et al. [32] considered MCS as a sensory data market and
proposed a fair incentive mechanism. In the proposed data
market, mobile users are classified into monthly-pay users and
instant-pay users. A three-stage Stackelberg game is designed
to motivate the participation of mobile users. Finally, the
incentive mechanism is deployed on blockchain.

Data quality is another concern of MCS. An et al. [33] pro-
posed a blockchain-based model to assess data quality in the
decentralized MCS. They used delegated proof of reputation
(DPoR) as the consensus mechanism and deployed the model
on blockchain via smart contracts. The simulation results show
that the proposed model performs well in terms of data quality.
Kadadha et al. [15] proposed a decentralized framework called
SenseChain, which takes into account Quality of Information
(QoI). In SenseChain, each mobile user has a specific QoI for
each sensing task. Here, QoI is calculated based on reputation,
time, and distance. The worker-task pair with the highest QoI
has the largest probability to be selected as an assignment.

Although these are some existing studies on the decen-
tralized MCS, some key problems are not solved or clearly
explained. In this paper, we propose our solutions to three
problems. The first problem is how mobile users make their
sensing plans in the decentralized MCS. Since sensing tasks
are location-dependent, mobile users have to travel around to
perform them. In addition, the resources (e.g., travel distance)
of mobile users are limited. Therefore, mobile users should
carefully design their travel paths as the sensing plans. In
existing contributions, it is not clearly explained how the
sensing plans of mobile users are determined. In this paper, we
formulate the path planning problem and propose a heuristic
algorithm to solve it. The second problem is related to the
fact that it is expensive (sometimes infeasible) to solve com-
putationally intensive problems in blockchain. However, the
existing contributions (e.g., [15,31]) implement all necessary
computations in smart contracts. In this paper, we employ
computing oracles to solve these problems to avoid the high
cost in blockchain. Third, it is possible that the data recorded
in blockchain is stolen by other mobile workers because
blockchain is accessible to all mobile workers; this is known
as the freeloading problem. The existing contributions do not
consider this problem. In this paper, we propose that mobile
workers first upload the hash value of their collected data and
then they upload the real data after the reward determination
is finished. The hash value can be used to verify the real data.

III. FRAMEWORK STRUCTURE AND WORKING PROCESS

In this section, we describe in details the structure and work-
ing process of ChainSensing. In ChainSensing, we formulate
the path planning, path selection, and reward determination
problems. Table I shows the notations that are used in the rest
of this paper.

A. Structure of ChainSensing

Fig. 3 shows the structure of ChainSensing. There are
mobile users (data requesters or mobile workers), computing
oracles, and blockchain (with smart contracts). In ChainSens-
ing, blockchain is represented by a smart contract, which is
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TABLE I
NOTATION DEFINITIONS.

Notations Definitions
V Set of sensing tasks
bi Reward of task vi
ti Preset sensing time of task vi
δi Time window radius of task vi
ki Required data number of task vi
locti Location of task vi
W Set of mobile workers
Pj Travel path of worker wj

hj Travel distance limit of worker wj

lj Straight-line distance of worker wj

fj Travel speed of worker wj

d(Pj) Travel distance of path Pj

τij Completion time of task vi by worker wj

xj Selection result of path Pj

qij Data quality of task vi from worker wj

rij Reward result of task vi for worker wj

uj Reward to worker wj

locsj Start point of worker wj

locej Destination of worker wj
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Tasks
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Fig. 3. Structure of ChainSensing.

the cornerstone of the system. Other components (i.e., data
requesters, mobile users, and computing oracles) interact with
it to complete their operations. For instance, data requesters
publish sensing tasks and deposit rewards to the smart contract.
Mobile users access the task information via the smart contract
and bid sensing plans to it. Since the smart contract has
some computationally intensive problems to solve, e.g., path
selection problem, it employs a group of computing oracles
to avoid high computational cost in blockchain. The smart
contract leverages computing oracles to make a selection from
the submitted sensing plans. An oracle is a trusted third-party
entity that can be used to access data or perform computing
tasks on behalf of smart contracts. There are two types of
oracles: (a) data oracles: allow smart contracts to access data
off-chain (e.g., Ether exchange rate and temperature); and
(b) computing oracles: perform computing tasks for smart
contracts. Examples of oracles include Provable (formerly
Oraclize; currently, it is the leading oracle) and Chainlink [34].
A computing oracle can be deployed in a data center (cloud)
or an edge node [35].

B. Working Process of ChainSensing

Fig. 4 shows the working process of ChainSensing.
There are different participants. A blockchain platform (e.g.,

Ethereum) is leveraged to accommodate our smart contract.
Since our smart contract is deployed in a specific platform,
we directly use the consensus mechanisms in this platform.
For instance, we use the PoW consensus (currently used by
Ethereum) when we leverage Ethereum to deploy our smart
contract. An organizer or initiator deploys the smart contract
to the platform and controls the process of sensing activities.
In ChainSensing, a complete cycle of sensing activities is
divided into different phases and some operations are only
allowed in certain phases. Mobile users are classified into
two categories, i.e., data requesters and mobile workers. In
addition, computing oracles are used to solve computationally
intensive problems. Next, we introduce the working process
of ChainSensing phase by phase.

1) Deployment of Smart Contract: At the very beginning,
the organizer deploys the smart contract in the blockchain
platform (e.g., Ethereum). Next, computing oracles register in
the smart contract. It is worth noting that the organizer can
define various ways of oracle registration in the smart contract.
For instance, the registration is open to any computing oracle
with certain computing power. To enhance security and trust,
the organizer can provide a list of computing oracles and each
oracle in the list is generally with high reputation. Thus, only
computing oracles (trusted by the organizer) in the list can
register in the smart contract. In addition, the smart contract
can also create a reputation table to dynamically evaluate
the computing oracles based on their performance in the
sensing activities. The organizer can use different methods of
registration according to the application. In this phase, data
requesters and mobile workers create their own accounts (or
wallets) that are used to interact with the smart contract. Each
account contains the information of balance (e.g., Ether in an
Ethereum account). The identity of a mobile user (either data
requester or mobile worker) can be confirmed by the account
address (i.e., hash of public key). After each phase is over,
the organizer invokes a function in the smart contract to enter
the next phase and the smart contract emits events to notify
stakeholders.

2) Task Publishing: In this phase, data requesters publish
their sensing tasks to the smart contract. The set of published
tasks is represented by V = {v1, v2, ..., vm}. For each task
vi ∈ V , an amount of deposit, denoted by bi, is locked in
the smart contract as the reward to mobile workers. Task vi
requires a sensing time that is denoted by ti; it represents
the expected time when task vi is performed. To enable
mobile workers to complete task vi, there is a sensing interval
δi. That is to say, the data collected within time window
[ti − δi, ti + δi] is acceptable to task vi. In addition, task vi
may require multiple data samples; the number of samples
is denoted by ki. If any mobile worker is interested in the
sensing activities, the task information can be accessed through
the smart contract. The set of mobile workers is denoted by
W = {w1, w2, ..., wn}.

3) Path Planning: After mobile workers receive the task
information, they need to make sensing plans by selecting
sensing tasks. Since sensing tasks are generally location-
dependent, mobile workers have to travel around to complete
their plans with limited resources (e.g., maximum travel dis-
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Fig. 4. Working process of ChainSensing.

tance); this is known as the path planning problem. For each
mobile worker wj ∈ W , the travel path is denoted by Pj .
Fig. 5 shows the path planning problem of worker wj . The
travel path has a start point and a destination. We denote the
straight-line distance from the start point to the destination
by lj . In addition, there is a maximum travel distance hj
associated with the travel path. To ensure that worker wj is
able to arrive at the destination, hj should not be smaller than
lj . The travel speed of worker wj is denoted by fj . Since
worker wj desires to accomplish as many sensing tasks as
possible and each selected task must be performed within
its time window, the path planning problem of worker wj is
formulated as follows:

max.
∑
vi∈Pj

1 (1a)

s.t. lj ≤ d(Pj) ≤ hj (1b)
ti − δi ≤ τij ≤ ti + δi,∀vi ∈ Pj (1c)

where d(Pi) is the travel distance of path Pj and τij is the
time when task vi is performed by worker wj .

∑
vi∈Pj

1
represents the number of completed tasks along path Pj . It is
worth noting that it is not only one feasible strategy of mobile
workers to perform as many tasks as possible when they plan
their travel paths. They can design different strategies to select
sensing tasks. Mobile workers solve the path planning problem
by their devices (e.g., smart phones and tablets) and then
submit their sensing plans (travel paths) to the smart contract.
They also submit deposits to the smart contract as penalty fees
in case they cannot accomplish their assigned sensing tasks or
they cannot upload the data on time.

4) Path Selection: In this phase, the smart contract needs
to make a selection from the submitted sensing plans (travel
paths); this is known as the path selection problem. After
the path selection, the smart contract also needs to determine
rewards to mobile workers. However, these computationally
intensive problems are expensive to be solved directly in the
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smart contract. Therefore, we leverage computing oracles to
solve them. Since there are multiple oracles registered in the
smart contract, we can design various methods to employ one
or more oracles. For instance, we can randomly select one
oracle. The computing oracle receives the information of these
problems and then solve them. Next, it returns the results to the
smart contract. To ensure that the smart contract can receive
the results, we may impose some penalties on the computing
oracle if the results are not returned on time.

In the path selection problem, the objective is to complete
all sensing tasks with a minimum number of selected sensing
plans (travel paths). Thus, the path selection problem is
formulated as follows:

min.
∑

wj∈W
xj (2a)

s.t.
∑

Pj :vi∈Pj

xj ≥ ki,∀vi ∈ V (2b)

xj ∈ {0, 1},∀wj ∈W (2c)

where xj = 1 indicates the travel path of worker wj , i.e.,
path Pj , is selected; otherwise, it is not selected. Hence,∑

wj∈W xj is the number of selected travel paths. Constraint
(2b) indicates that task vi requires at least ki data samples. It
may receive more than ki data samples from mobile workers.
However, only ki mobile workers can receive their rewards for
performing task vi because the deposit from the data requester
of task vi is only enough to issue these ki rewards.

We propose to select the subset with ki elements based on
data quality. According to [36], data quality can be identified
in four dimensions: accuracy, completeness, consistency, and
timeliness. In this paper, we consider data quality from the
perspective of timeliness. Task vi is expected to be performed
within a time window that is centered at time ti. If worker wj

performs it at time τij , the data quality is evaluated by

qij = 1− |τij − ti|
δi

(3)

where data quality qij is within [0, 1]. When time τij is closer
to time ti (i.e., better performance in timeliness), data quality
qij is closer to 1; otherwise, data quality qij is closer to 0. It
is worth noting that we can use different methods to evaluate
data quality by modifying (3) accordingly.

Next, we sorts mobile workers, who compete for task vi,
by the data quality from largest to smallest. Only ki mobile

Current Location

Destination

Task

d1

d2

d0

Fig. 6. An example of calculating the additional distance.

workers are selected and awarded by performing task vi. We
use rij to represent the selection result of worker wj for task
vi. rij = 1 indicates that worker wj is selected and awarded
for performing task vi; otherwise, rij equals 0. The total
reward to worker wj , denoted by uj , is determined by

uj =
∑
vi∈Pj

(rij · bi). (4)

At the end of this phase, the computing oracle returns the
results to the smart contract.

5) Data Collection: In this phase, mobile workers access
the selection result from the smart contract. The selected
workers start to move around to perform the sensing tasks
along their travel paths and collect data at the locations of these
tasks. After the data collection, mobile workers submit hash
values of their collected data. Since the information recorded
in the smart contract is accessible to all mobile workers, it
is possible that the uploaded data is stolen by other mobile
workers; this is known as the freeloading problem. To solve
this problem, mobile workers first upload the hash values of
their collected data.

6) Data Submission: In this phase, mobile workers submit
their real data to the smart contract and then the smart
contract checks the real data of each mobile worker with
the corresponding hash value. If the check fails, this mobile
worker receives no reward and loses his own deposit.

7) Reward Distribution: In this phase, the smart contract
completes transactions if there is no problem in all the previous
phases. The rewards are distributed to the wallets of mobile
workers and data requesters can access the revealed data. The
sensing activities enter the next cycle.

IV. PROPOSED SOLUTIONS

In this section, we propose solutions to the path planning,
path selection, and reward determination problems. In addi-
tion, we analyze the complexity of path planning and path
selection problems. At last, we give the details of the smart
contract that implements ChainSensing.

A. Path Planning Problem

We briefly prove that path planning problem in (1) is NP-
hard.

Proof. We reduce a known NP-hard problem, i.e., orienteering
problem [37], to an instance of our formulated problem in (1).
In the orienteering problem, a player needs to plan a tour to
visit a number of tasks that are associated with certain game
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Algorithm 1: Solution to path planning problem.
Input: V , {locti|∀vi ∈ V }, {ti|∀vi ∈ V }, {δi|∀vi ∈ V },

wj , locsj , locej , hj , lj , fj
Output: Pj

1 Pj ← ∅
2 location← locsj
3 distance← 0
4 while distance ≤ hj − lj do
5 Get task set of all feasible tasks
6 if there is no feasible task then
7 break
8 else
9 Select task vi with the smallest cost

d̂(location, locti) · |τij − ti|
10 location← locti
11 distance← distance+ d̂(location, locti)
12 Add vi into Pj

13 return Pj

points. The objective is to maximize the final point with a
limited travel distance. The orienteering problem is already
proved to be NP-hard [37]. Let us construct an instance of
the path planning problem to solve the orienteering problem.
We assume that each sensing task has a game point of 1. The
time window of each sensing task is open during the sensing
activities. Hence, this constructed instance of the path planning
problem is exactly an orienteering problem. We conclude that
the path planning problem in (1) is also NP-hard.

Because the path planning problem is NP-hard, the search
space to find the optimal solution is huge. In addition, the
path planning problem is independently solved by the device
of each mobile worker with limited computational resources.
Therefore, an efficient algorithm is desired to solve the path
planning problem formulated in (1); we propose a heuristic
algorithm (see Alg. 1).

In Alg. 1, lines 1-3 initialize the travel path, current location,
and additional travel distance, respectively. To perform a
sensing task, worker wj has to travel an additional travel
distance. Fig. 6 shows an example of calculating the additional
travel distance. In this example, the additional travel distance
is computed to be (d1 + d2 − d0). Since worker wj has a
travel distance limit hj and the straight-line distance from its
start point to its destination is lj , the maximum additional
travel distance is limited by (hj− lj). If the current additional
travel distance does not exceed this limit (line 4), the set of
feasible sensing tasks is built (line 5). Here, a feasible sensing
task indicates it can be performed within its time window
and worker wj can perform it within the additional travel
distance limit. If there is no feasible sensing task (line 7),
i.e., this set is empty, the while loop ends (line 8); otherwise,
the sensing task with the smallest cost is selected (line 9).
We consider the cost from two perspectives, i.e., distance and
timeliness. d̂(location, locti) is the additional travel distance
of worker wj to perform task vi. |τij − ti| is used to measure
the corresponding timeliness. To reduce the cost, both the

Algorithm 2: Solution to path selection problem.
Input: V , {ki|∀vi ∈ V }, W , {Pj |∀wj ∈W}
Output: {xj |∀wj ∈W}

1 for j from 1 to n do
2 xj ← 0

3 Set up U
4 C ← ∅
5 while U * C do
6 Select path Pj with the largest number of desired

data samples in (U − C)
7 C ← C ∪ Pj

8 xj ← 1

9 return {xj |∀wj ∈W}

additional travel distance and timeliness should be minimized.
If task vi is performed by worker wj , the current location,
additional travel distance, and travel path of worker wj are
updated (lines 10-12). At last, line 13 returns the travel path
of worker wj , i.e., Pj .

In the worst case, all m sensing tasks are added into the
travel path and thus there are m iterations (lines 4-12). In each
iteration, we consider all unvisited sensing tasks to find the
sensing task with the smallest cost (line 9). At the beginning,
there are m unvisited tasks. Next, there is one task added to
the travel path at each iteration. Therefore, the time complexity
of Alg. 1 is O(m2) (i.e., m+ ...+ 2 + 1).

B. Path Selection Problem

We briefly prove that path selection problem in (2) is NP-
hard.

Proof. If the number of desired data samples for each task is 1,
the path selection problem in (2) is an instance of the set cover
problem. It is known that the optimization version of set cover
problem is NP-hard. Therefore, the path selection problem is
also NP-hard as a generalized set cover problem.

We propose a greedy-based algorithm to solve the path
selection problem (see Alg. 2). Lines 1-2 initialize the se-
lection status of travel paths. Line 3 sets up the target union.
Here, the target union is a set of all desired data samples.
For instance, if tasks v1, v2, and v3 desire 1, 2, and 3
data samples, respectively. The corresponding target union is
{v1, v2, v2, v3, v3, v3}. Line 4 initializes the current union of
data samples. If the current union does not cover the target
union (line 5), we select the travel path with the largest number
of desired data samples in the union of unvisited tasks, denoted
by (U−C), in line 6. Next, we add the data samples along the
selected travel path into the current union (line 7) and set its
selection status to be 1 (line 8). Finally, we return the result
of selection when the target union is fully covered (line 9).

The initialization of selection status in lines 1-2 is O(n),
when all n mobile workers submit their travel paths. In the
worst case, we have to select all n travel paths to cover the
target union and thus there are n iterations (lines 5-8). At
each iteration, we check every unselected travel path to find
the travel path with the largest number of desired data samples
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Algorithm 3: Solution to reward determination problem.
Input: V , {bi|∀vi ∈ V }, {ki|∀vi ∈ V }, W ,

{Pj |∀wj ∈W}, {xj |∀wj ∈W}
Output: {uj |∀wj ∈W}

1 for j from 1 to n do
2 uj ← 0

3 for i from 1 to m do
4 Get set of competitors for task vi as Ci

5 Sort Ci in an increasing order of data quality
6 for j from 1 to n do
7 if xj equals 1 and task vi is in Path Pj and

worker wj wins in Ci then
8 uj ← uj + bi

9 return {uj |∀wj ∈W}

in (U − C) in line 6. Therefore, the overall time complexity
of Alg. 2 is O(n2) (i.e., n+ ...+ 2 + 1).

C. Reward Determination Problem

The solution to the reward determination problem is simple
and straightforward. For each sensing task vi ∈ V , we first list
all mobile workers who include task vi in their travel paths;
these mobile workers are the competitors for task vi. Next,
we select winners one by one from the competitors according
to data quality. Alg. 3 shows the details of our proposed
solution. Lines 1-2 initialize the rewards to mobile workers.
For each sensing task vi ∈ V (line 3), we obtain the set of
its competitors (line 4) and sort them in an increasing order
with respect to data quality (line 5). To find the winners of
task vi, each mobile worker wj ∈ W is evaluated (line 6).
If worker wj meets certain conditions (line 7), the reward of
task vi, i.e., bi, is distributed to worker wj (line 8). There are
three conditions. First, the travel path of worker wj is selected
(i.e., xj = 1). Second, task vi is included in the travel path of
worker wj . Third, worker wj is a winning competitor of task
vi. Finally, line 9 returns the result of final rewards to mobile
workers.

The initialization of rewards to mobile workers in lines 1-2
is O(n), when all n mobile workers are considered. Since we
have m sensing tasks, there are m iterations (lines 3-8). At
each iteration, we check all n mobile worker to set up the set
of competitors (line 4). The time complexity of sorting this set
by sorting algorithms (e.g., merge sort) is O(n log n) in line 5.
In the worst case, we traverse all n mobile workers to find the
ki winners of task vi (lines 6-8); this step is O(n). Therefore,
the overall time complexity of Alg. 3 is O(mn log n) taking
into account all m iterations.

D. Smart Contract

Fig. 4 shows the working process of our proposed frame-
work. For more details of interactions and operations in our
smart contract, Table II shows its implementation details. The
smart contract is implemented by using Solidity. There are
different types of components in the smart contract, e.g.,
variable, event, modifier, and function. Variables have their

TABLE II
IMPLEMENTATION DETAILS OF SMART CONTRACT.

Notations Types
Task {longitude, latitude, reward, variable(struct)

time, interval, number}
Path {tasks, deposit, reward, selection, hash, data} variable(struct)
organizer variable(address)
tasks variable(mapping)
paths variable(mapping)
oracles variable(mapping)
Phase {Deployment, Publishing, Bidding, variable(enum)

Selection, Collection, Submission, Done}
currentPhase variable(Phase)
RegistrationStarted() event
PublishingStarted() event
BiddingStarted() event
SelectionStarted() event
CollectionStarted() event
SubmissionStarted() event
Ended() event
validPhase() modifier
onlyOrganizer() modifier
constructor() function
changePhase() function
registerOracles() function
publishTasks() function
bidPaths() function
returnSelection() function
submitHash() function
submitData() function
distributeRewards() function

own data types. There are many built-in data types, e.g., uint
(unsigned integer), address, and mapping. On the other hand,
we can define new data types. For instance, struct is one user-
defined type to represent a collection of variables under a
single name and enum is one way to create a user-defined type
that restricts a variable to have one of a few predefined values.
Events allow the convenient usage of logging. When events
are emitted, the logs are stored in blockchain and they are
accessible. Thus, we can use events to inform mobile workers
of the current phase. Modifiers are special functions that are
used to modify the behaviour of a function. For instance, we
can add a prerequisite to a function via modifiers. Functions
are reusable code that can be called to complete some tasks.

In Table II, “Task” is an user-defined data type to store
variables related to a sensing task, e.g., location (longitude
and latitude). “Path” is a data type defined for the travel path
of one mobile worker. “organizer” represents the organizer
address. “tasks”, “paths”, and “oracles” store the information
of sensing tasks, travel paths, and computing oracles, respec-
tively. “Phase” is an user-defined data type to enumerate all
phases and “currentPhase” is used to track the current phase.
Since we emit an event when the sensing activities enter a
new phase, we define seven events corresponding to seven
phases, e.g., “RegistrationStarted()”. To add prerequisites to
some functions, we define two modifiers. “validPhase()” is
used to check whether a function is feasible in the current
phase and “onlyOrganizer()” indicates that a function can only
be executed by the organizer. “constructor()” is the constructor
function to perform the initialization when the smart contract is
deployed. “changePhase()” is used by the organizer to change
the current phase to the next phase. “registerOracles()” is a
function that allows computing oracles to register in the smart
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Fig. 7. Locations of sensing tasks and mobile workers.

contract. “publishTasks()” is used by data requesters to publish
their sensing tasks. “bidPaths()” allows mobile workers to bid
their sensing plans (travel paths). “returnSelection()” is used
by computing oracles to return the results of path selection to
the smart contract. Mobile workers use two functions to submit
the hash of data (with “submitHash()”) and the real data (with
“submitData()”). Finally, a function (“distributeRewards()”) is
automatically invoked to transfer the total benefits of mobile
workers (sensing rewards and their own deposits) to their
wallets when the smart contract enters the last phase.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we evaluate our proposal via simulations.
More specifically, we show the results of path planning, path
selection, and reward determination. In addition, we present
the cost of operations in ChainSensing.

A. Simulation Settings

We set up the sensing region as a square area with side
length of 100 meters. 10 sensing tasks and 15 mobile workers
are distributed in this area. Mobile workers start from the left
side and move to their destinations that are located at the right
side. Sensing tasks are located in the middle area. Fig. 7 shows
the locations of sensing tasks and mobile workers.

The travel speed of each mobile worker is 1 meter per
second (i.e., normal walking speed of people) and the travel
distance limit of each mobile worker is 400 meters. To measure
the travel distance of mobile workers, Euclidean distance is
used. The sensing time of each sensing task is randomly
selected from [100, 150] (unit is second) and the interval
of each sensing task is 100 seconds. The reward of each
sensing task is 1. The required number of data samples for
each sensing task is 3. Finally, the settings of all simulation
parameters can be found in Table III. To evaluate our proposal,
we deploy our smart contract on Ethereum via Remix. The
transaction cost of the deployment is 1934270 gas.

TABLE III
SIMULATION PARAMETERS.

Parameter Value

Sensing area 100 m ×100 m
Number of sensing tasks 10
Number of mobile workers 15
Travel speed of each worker 1 m/s
Travel distance limit of each worker 400 m
Sensing time of each task 100-150 s
Sensing interval of each task 100 s
Reward of each task 1
Number of desired data samples for each task 3
Blockchain platform Ethereum

TABLE IV
RESULT OF BIDDING PATHS.

Worker Path Transaction Cost (gas)

0 5, 2, 9, 1, 4, 6, 8 435231
1 9, 2, 1, 3, 0, 7, 4, 6, 8 462915
2 5, 2, 9, 1, 4, 6, 8 420231
3 2, 5, 4, 1, 9, 3 379657
4 4, 1, 2, 9, 3, 0, 7, 6, 8 462915
5 4, 2, 3, 1, 9 339083
6 7, 1, 6, 4, 2, 9, 3 420231
7 2, 6, 8, 4, 1, 9, 3 420231
8 2, 3, 1, 4, 6 339083
9 4, 1, 2, 9, 3, 0, 7, 6, 8 462915
10 6, 2, 7, 1, 4, 8 379657
11 2, 3, 1, 4, 6, 8 379657
12 2, 6, 4, 1, 9, 3 379657
13 5, 0, 3, 1, 2, 4, 6, 8 422341
14 2, 8, 6, 4, 1, 9, 3 420231

B. Result of Publishing Tasks

In the task publishing phase, data requesters publish their
sensing tasks to the smart contract. Since the data structure
of each sensing task is predetermined (e.g., location, sensing
time, and reward), the transaction cost to publish a sensing
task is fixed at 145007 gas.

C. Result of Bidding Paths

In the path planning phase, mobile workers plan their travel
paths with the smart devices via Alg. 1 and then bid their
travel paths to the smart contract. Since travel paths contain
different sensing tasks, the transaction cost to bid a travel path
is also different; the results are shown in Table IV.

The transaction cost increases as the number of sensing
tasks grows because there are more data transferred to the
smart contract. For instance, the travel path of mobile worker
#1 has the largest number of 9 sensing tasks and the corre-
sponding transaction cost also has the largest value of 462915
gas. On the contrary, there are only 5 sensing tasks in the
travel path of mobile worker #5 (the smallest number) and the
transaction cost of bidding his path has the smallest value of
339083 gas. When the travel paths include the same numbers
of sensing tasks, the transaction costs are the same even if the
sensing tasks are not exactly the same. For example, the travel
paths of mobile workers #6 and #7 have different task sets:
(#7, #1, #6, #4, #2, #9, #3) and (#2, #6, #8, #4, #1, #9, #3).
However, they have the same transaction cost of 420231 gas
because they have the same number of sensing tasks (i.e., 7).



10

TABLE V
RESULT OF WINNERS.

Task Competitor Winner

0 1, 4, 9, 13 13, 1, 9
1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 2, 13, 3
2 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 4, 9, 2
3 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14 1, 13, 9
4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 3, 2, 13
5 0, 2, 3, 13 3, 2, 13
6 0, 1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14 2, 13, 1
7 1, 4, 6, 9, 10 1, 9, 4
8 0, 1, 2, 4, 7, 9, 10, 11, 13, 14 2, 13, 1
9 0, 1, 2, 3, 4, 5, 6, 7, 9, 12, 14 9, 4, 2

TABLE VI
RESULT OF REWARDS TO WORKERS.

Worker Selection Reward

0 No 0
1 Yes 5
2 Yes 7
3 Yes 3
4 Yes 3
5 No 0
6 No 0
7 No 0
8 No 0
9 Yes 5
10 No 0
11 No 0
12 No 0
13 Yes 7
14 No 0

D. Result of Selecting Paths

In ChainSensing, we propose to leverage computing oracles
to solve the path selection and reward determination problems.
In our simulation, we use our own computer as the trusted
computing oracle. In real-life setup, commercial oracles can be
used (e.g., Provable and Chainlink) [34]. After the calculation,
we submit the results of path selection and reward determina-
tion to the smart contract. The submission has a transaction
cost of 424543 gas.

Table V shows the sets of competitors and winners for each
sensing task. The competition for some sensing tasks is so
fierce (e.g., tasks #1, #2, and #4) that all mobile workers are
fighting for them. However, there are some sensing tasks with
a small number of competitors (e.g., tasks #0 and #5). Since
each sensing task requires 3 data samples, there are 3 final
winners of each sensing task.

Table VI shows the results of path selection and rewards to
mobile workers. There are 6 mobile workers that are selected
with their travel paths, i.e., workers (#1, #2, #3, #4, #9, #13).
Each selected mobile worker receives a reward. The final
reward of one mobile worker is determined by the sensing
tasks that he wins (see Table V). For instance, the travel path
of mobile worker #1 contains 9 sensing tasks (#9, #2, #1, #3,
#0, #7, #4, #6, #8). However, mobile worker #1 only wins
5 of them, i.e., (#3, #0, #7, #6, #8), according to Table V.
Therefore, the final reward to mobile worker #1 is 5.

To show the details of how these winning mobile workers
perform the sensing tasks along their travel paths, Fig. 8

TABLE VII
RESULT OF DATA SUBMISSION.

Winner Data Transaction Cost (gas)

1 9, 2, 1, 3, 0, 7, 4, 6, 8 37131
2 5, 2, 9, 1, 4, 6, 8 34587
3 2, 5, 4, 1, 9, 3 33283
4 4, 1, 2, 9, 3, 0, 7, 6, 8 37131
9 4, 1, 2, 9, 3, 0, 7, 6, 8 37131
13 5, 0, 3, 1, 2, 4, 6, 8 35827

presents the travel paths of winners (i.e., workers #1, #2, #3,
#4, #9, and #13). Mobile workers #4 and #9 have similar travel
paths, start locations, and destinations. That is to say, they are
competitors with each other. However, both travel paths are
selected as winners because they can finish 9 sensing tasks.
Although there is a competition among mobile workers, the
one who can accomplish more sensing tasks always has an
advantage over others.

E. Result of Submitting Data

To prevent the freeloading problem, selected mobile workers
first submit the hash value of collected data in the data col-
lection phase. Mobile workers compute the hash by applying
hash functions (e.g., Keccak-256) to the collected data. Since
the hash value has a fixed length, the transaction cost to submit
the hash value by different mobile workers is the same; it is
23654 gas.

In the data submission phase, mobile workers start to submit
the real data along their travel paths. The real data of each
sensing task in our simulations is just an integer number (the
index of each sensing task). It is worth noting that we can use
different data types in other applications. Table VII shows the
transaction cost to submit the real data. We observe that the
transaction cost increases with the amount of submitted data.

In the last phase, the smart contract checks the submitted
data with the corresponding hash values. If the check passes,
the smart contract distributes rewards to selected mobile
workers.

VI. CONCLUSION

In this paper, we investigated the problems of centralized
MCS, e.g., single point of failure and trust issue. To solve
these problems, we proposed a novel decentralized MCS
framework, named ChainSensing, based on blockchain with
smart contracts. We defined the structure and working pro-
cess of ChainSensing. The interactions between mobile users
and ChainSensing is illustrated in details. In ChainSensing,
we have to solve several computationally intensive problems
including path planning, path selection, and reward determi-
nation problems. We proposed the corresponding solutions to
these problems. More specifically, we proposed a heuristic
solution running on mobile users’ devices to the path planning
problem. We leveraged computing oracles to solve the path
selection and reward determination problems to avoid the
high cost in blockchain. Greedy-based solutions are proposed
to solve these two problems in computing oracles. Finally,
we evaluated our proposal via simulations on Ethereum. The
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Fig. 8. Travel paths of winners.

results show that our proposed framework is able to publish
sensing tasks on behalf of data requesters and motivate mobile
workers by rewards to perform sensing tasks.
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