

ChainSecure - A Scalable and Proactive Solution for
protecting Blockchain applications using SDN

Zakaria Abou El Houda 1,2, Lyes Khoukhi 1 and Abdelhakim Hafid 2

 1 ICD/ERA, University of Technology of Troyes, France

 2 Department of Computer Science and Operational Research, University of Montreal, Canada
{zakaria.abou_el_houda, lyes.khoukhi}@utt.fr

{zakaria.abou.el.houda, ahafid}@iro.umontreal.ca

 Abstract—Nowadays, blockchain is seen as one of the
main technological innovations. Many applications can rely
on the blockchain to secure their exchanges. However,
applications with private interest cannot rely on public
blockchains. First, in a public blockchain, anyone can read the
whole data of the blockchain. Second, anyone can participate
to the “consensus process”; the process for determining the
validity of each transaction. Consortium and fully private
blockchains aim to combine forcefulness of blockchains with
controlled consensus process and stricter permissions for
deploying a node and joining the blockchain network. In both
consortium and fully private blockchains, the number of peers
on the blockchain network is very small in comparisons with
public blockchain. Nonetheless, by targeting the nodes of
blockchains, an attacker can easily manage the whole
blockchain and takes control of the consensus process to
validate his illegitimate transactions. In this paper, to defend
blockchain nodes from DNS amplification attacks, we
propose a scalable and proactive solution in the context of
software defined networks (SDN), named ChainSecure.
ChainSecure consists of 3 schemes: (1) StateMap, a novel
stateful mapping scheme (SMS) to perform a mapping one-
to-one between DNS request and response; (2) Entropy
calculation scheme (ECS) to measure the disorder /
randomness of data using sFlow in order to detect illegitimate
flows; (3) DNS DDoS Mitigation (DDM) module to effectively
mitigate illegitimate DNS requests. The experimental results
show that ChainSecure protects blockchain nodes and can
detect/mitigate the attack quickly and achieves high accuracy
in detecting illegitimate DNS traffic making it a promising
solution to protect blockchain nodes from DNS amplification
attacks.

Keywords— DDoS; DNS Amplification; OpenVswitch;
SFlow; OpenFlow; Blockchain; Entropy.

I.INTRODUCTION

A. Overview
 Blockchain technologies have caught the attention of
many industrials and researchers since the beginning of
Bitcoin in 2008 [1] and are in the road to become the fifth
disruptive innovation after mainframes, PCs, Internet, and
mobile networking. Blockchain is a technology that allows
to store and transmit information securely without a central
trusted tier; it is a transparent register that everyone can
consult but without ever being able to modify these entries.
The blockchain consists of an ordered set of blocks; each
block contains a set of transactions in the case of Bitcoin
and the execution of smart contracts in the case of
Ethereum [2]. Each block has a hash value of its
predecessor block, as shown in Fig.1. The hash value of
the predecessor block forms a link between blocks which
makes the blockchain immutable; if an attacker tries to
falsify a transaction in 𝑛𝑛𝑡𝑡ℎ block, he must change 𝑛𝑛 − 1

previous blocks, which is tricky in terms of computing
capabilities. A complete list of blocks (from the first called
genesis to the latest) are stored in each blockchain node
and shared between peers relying on the peer-to-peer
network. To append new blocks to the blockchain, a
consensus algorithm is used. Bitcoin network relies on
proof-of-work to ensure the consensus process, while
other blockchains use proof-of-stake or a system of votes
to ensure the validity of the pending block.

Fig.1. Blockchain.

 While the public blockchain network, like Bitcoin
makes all blocks and transactions accessible to public and
anyone can participate to consensus process, fully private
or consortium blockchains, like R3 [3], restrict the access
to the blockchain to specific participants. The permission
access in a fully private blockchain is managed by a
centralized organization, while a consensus process in a
consortium blockchain is controlled by a pre-selected set
of nodes. Because of the limited number of participants of
a fully private and consortium blockchain, it is very
important to ensure the availability of all nodes at all time
and protect them against DDoS attacks. DNS amplification
attack is one of the most devastating types of DDoS attacks
aiming to make a targeted blockchain node unable to
transmit or receive any information of the blockchain
neither participate to the consensus process. In what
follows, we describe DNS amplification attacks.

B. Description of DNS amplification attacks
DNS amplification attack is one of the most devastating

types of Distributed Denial of Service (DDoS) attacks that
relies on the use of Open Resolver (publically accessible
DNS servers) to flood a victim system with DNS response
traffic [4]. In this type of attacks, the attacker spoofs the IP
address of DNS requests by replacing the source-address
field with the victim’s IP. The spoofed queries sent by the
attacker are of the type “ANY”; they include all known
information about a DNS zone in a single request; then, he
manages a botnet of machines (called zombies) to start the
attack. Each zombie sends requests to Open Resolver
(public DNS server) that makes a recursive resolution and
responds to these requests with responses that are sent to
the victim. In this case, the victim is flooded with DNS
responses that do not correspond to any request he sent (see
Fig. 2). According to a recent study, there are about 7.5
million external DNS servers in the Internet; more than

75% of these servers allow recursive name service to the
public [5]. This means that if attackers use many recursive
servers to generate the attack, this can cause significant
collateral damage on the victim.

 Fig.2. Concept of DNS amplification attacks.

In this paper, to protect the blockchain nodes from DNS
amplification attacks, we propose a scalable and proactive
solution in the context of software defined networks (SDN),
named ChainSecure. To the best of our knowledge, our
paper is one of the first works to deal with protecting nodes
of private blockchain against DNS amplifications attacks.
In the SDN environment, SDN controller has a global view
of the network and can be programmed directly by network
administrators [6]. While SDN can protect the network
from DDoS attacks [7], it can be a victim of these attacks
[8]. To address this problem, ChainSecure makes use of a
novel stateful mapping scheme implemented in OpenFlow
switch (e.g. OpenvSwitch) to defend against DNS
amplification attacks and protect SDN controller. Each
OpenFlow switch filters DNS packets according to the
header fields. By comparing the IP address, MAC address
and UDP Port of each request and its corresponding
response, SMS checks the legitimacy of the responses and
automatically drops illegitimate responses. This allows
OpenFlow switches to be smart enough to react very
quickly to detect and mitigate attacks, and not wait for a
reactive action from the controller. Thus, it can effectively
protect the controller resource. However, if a switch
processes all DNS traffic that it receives, it will be
overwhelmed. To alleviate this issue and protect Ternary
Content Addressable Memory (TCAM) of switches which
is limited in size, ChainSecure makes use of a robust
detection scheme based on traffic flow features using
Entropy calculation scheme (ECS). ChainSecure protects
the nodes of blockchain without modifying the software of
nodes/ blockchain.

Our main contributions can be summarized as follows:

• We propose a novel stateful mapping scheme (SMS)
based on in-OpenFlow switch processing capabilities;
it allows OpenFlow switches to be smart enough to
secure blockchain nodes from DNS amplification
attacks. SMS greatly reduces exchanges between
OpenFlow switches and OpenFlow controller.

• We propose a real-time detection scheme, called
Entropy calculation scheme (ECS), to measure
disorder/ randomness of data in order to detect
illegitimate DNS requests using sFlow.

• We propose a DNS DDoS Mitigation (DDM) module
to effectively mitigate illegitimate DNS requests.

• We evaluate the performance of ChainSecure in terms
of scalability, effectiveness and efficiency. The
experiments results show that our scheme can
effectively mitigate the attack with high accuracy and
low overhead.

The rest of the paper is organized as follows. Section II
presents related work. Section III introduces design
overview and system architecture. Section IV presents
StateMap stateful mapping scheme (SMS). Section V
presents Entropy calculation scheme (ECS). Section VI
describes DNS DDOS mitigation module. Section VII
evaluates ChainSecure. Finally, Section VIII concludes the
paper and discusses future work.

II.RELATED WORK
 Blockchains is considered as a new technology for
secure, store and transmit information in a decentralized
manner without a trusted tier. Blockchain provides a robust
solution to protect all the exchanges made between users
against any types of alterations. To the best of our
knowledge, there is no work that has been proposed to
protect nodes of private blockchain against DNS
amplifications attacks. In this paper, we do not consider
public blockchain due to the large number of nodes (e.g.,
bitcoin blockchain has over 7000 nodes); in case of
consortium and fully private blockchains, which are
becoming more widespread, the security and availability of
blockchain nodes need to be considered. In [9], Mathis et
al. proposed an OpenFlow-based firewall to provide
security to the blockchain nodes. The solution proposed in
[9] is implemented as a module in a SDN controller and
uses SDN functionalities for filtering network traffics; it
provides access control functionality and protect
blockchain nodes from DoS attacks. However, a very high
packet rate from switches to SDN controller may overload
the control plane. In [10], Wang et al. proposed an entropy-
based flow statistics scheme in the OF switch; it focuses
on detection but it cannot find the victim or the illegitimate
hosts and block them. Moreover, the calculation of the
packets IP addresses destination entropy value may delay
the response time. Sun [11] proposed a low-cost hardware
solution to defend against amplification attacks. The
solution works well; however, it is hardware-based making
it hard to update and extend. Guo et al. [12] proposed a
mechanism that deploys filters at the border of the network
to block incoming source IP addresses not sent from the
network. The effectiveness of this method [12] depends on
the global deployment across the Internet. It is
“neighborhood policy” that requires all Internet service
providers (ISP) to participate in order to provide the list of
IP addresses that do not belong to their networks.
Kambourakis et al. [13] proposed a solution for the DNS
amplification attack by storing all incoming DNS requests
and responses. Each time an illegitimate response is
received, a counter is incremented until it reaches a
threshold. When the threshold is reached, an attack alert is
generated and a DNS amplification attack is assumed to
have happened. The problem with this approach is that it
does not scale for large networks because it needs to store
all DNS traffic queries and responses. Zaalouk et al. [14]
proposed a solution based on SDN to counter DNS
amplification attacks. The solution uses sFlow[15] to
monitor DNS traffic. If the detection module detects an
attack, it informs the orchestrator. The orchestrator
commands the controller to return back traffic to the
orchestrator for inspection. This solution does not
distinguish between legitimate and illegitimate responses
since all DNS responses will be sent to SDN controller and
may overload the orchestrator. To address the

shortcomings of existing solutions [9-14], we propose an
efficient and scalable solution, called ChainSecure, to
detect and prevent DNS amplification attacks. In our work,
we combine entropy calculation using sFlow with SDN
functionalities to block illegitimate traffic. We also use in
our process of detection/mitigation, the REST [16] API to
manage controller and block illegitimate hosts.

III.SYSTEM DESIGN

A. Design Overview
ChainSecure should give a full protection to blockchain

nodes from any illegitimate traffic. Unlike existing
solutions [9-14] which try to analyze the state of the
network and detect the attacks, we aim to act proactively in
order to avoid sending illegitimate traffic to blockchain
nodes; this is ensured via the proposed StateMap scheme.
In addition, to protect Ternary Content Addressable
Memory (TCAM) of switches which is limited in size,
ChainSecure makes use of a robust detection scheme, based
on traffic flow features using Entropy calculation scheme
(ECS), to detect illegitimate traffic. Finally, the attacks
should be effectively mitigated and the whole system has to
be as scalable as possible.

B. System Architecture
The architecture of ChainSecure consists of three main

schemes (see Fig.3): (1) StateMap, a novel stateful mapping
scheme (SMS); (2) Entropy calculation scheme (ECS); and
(3) DNS DDoS mitigation module.

Fig.3. System Architecture

 StateMap, a novel stateful mapping scheme (SMS), is
based on in-OpenFlow switch processing capabilities. SMS
performs one-to-one mapping between DNS request and
response; it operates proactively by sending only legitimate
responses, excluding the amplified illegitimate traffic, to
SDN controller; this allows protecting SDN controller from
DNS amplification attacks. Entropy calculation scheme
(ECS) aims to measure the disorder/randomness of data
using flow statistics; ECS has the objective to detect, in
real-time, illegitimate flows based on current network
features. ECS is running as an application on the top of the
controller and using sFlow protocol; it collects traffic
information and detects automatically illegitimate flows.
DNS DDoS mitigation (DDM) module aims to effectively
mitigate illegitimate DNS requests. OpenFlow was not
designed to support QoS features; however, OpenFlow 1.3
introduces meters to the OpenFlow protocol (see Section
VI). A flow entry can specify a meter; meter entries with

different Meter_id are deployed to monitor the speed of
DNS requests of the classified illegitimate flows by ECS; if
the packet rate exceeds the band, DDM drops suspected
packets (rate limiter).

IV.STATEFUL MAPPING SCHEME (STATEMAP)
 StateMap is a new stateful mapping scheme that

performs one-to-one mapping between DNS request and
response. The SDN controller pushes the control
functionality to OpenFlow switches in order to process all
DNS packets. StateMap considers a DNS response as
legitimate if there is a pre-sent DNS request matching that
response. More specifically, the DNS response must have
the same reversed values for the fields MAC, IP, and UDP
port of a pre-sent request; otherwise, DNS response will be
classified as illegitimate and systematically eliminated.
This voids any attempt of external attacks that aims to flood
the blockchain nodes with amplified DNS responses. When
an attacker is within the network, he can spoof a source IP
address of a blockchain node to direct the DNS response to
that node/victim. To remedy this problem, the DNS
response packet received, by each OpenFlow switch, is
transferred to the original port from which the
corresponding request came (see Fig.4). If the IP address
has been spoofed, the attacker will receive the returned
traffic. Otherwise, it will be the legitimate source that
receives the legitimate response. Thus, the blockchain is
totally protected; thanks to our proposed one-to-one
mapping, between request and response based on ingress
port of incoming request, we ensure that the blockchain
node does not receive any illegitimate traffic.

 Fig.4. StateMap functionalities.

V.ENTROPY CALCULATION SCHEME (ECS)
The huge amount of DNS requests may exhaust Ternary

Content Addressable Memory (TCAM) of the OF switch.
To alleviate this issue, we propose ECS to detect the
illegitimate flows and contain them in the real requester’s
space. First, we describe our information collection method
based on flow packet sampling using sFlow; then, we
describe ESC, an entropy based anomaly detection scheme
to measure the disorder/ randomness of data.

1. Flow statistics collection
 There are two commonly methods for collecting

information: the first is based on OF protocol and the
second is based on flow monitoring. In this paper, we
choose to implement ECS using flow monitoring methods
with sFlow. In the following, we describe each of these
methods and we justify our choice.

To detect DNS amplification attacks in SDN, most
existing solutions propose to collect and send, periodically,
the features of the flows (e.g. number of received packets,

duration of matched flows) to SDN controller using
OpenFlow (OF) protocol. Features collection with OF
protocol can be initiated when the controller sends a feature
request (ofp_flow_stats_request) to the OF switches which
respond by sending the flow table content
(ofp_flow_stats_reply). This method can collect the overall
traffic of flow information passing through the data plane.
However, this method can overload the control plane and
exhausts the bandwidth between the OF controller and OF
switches; furthermore, it may exhaust TCAM in OF
switches. Therefore, OF based method is not adequate for
detecting high rate DNS amplification attacks.

To address the shortcomings of the method described
above, we decided to monitor flows using sFlow. This is
more efficient, scalable and does not consume bandwidth
between controller and OF switches. sFlow performs flow
aggregation that is required during DDoS attacks when the
number of flow entries is very high. The sFlow collector
(sFlow-RT[17]) receives periodically packet samples from
each sFlow agent embedded in data plane (network
devices) and updates the counters of each flow during the
monitoring interval. Afterwards, periodically, ECS
calculates entropy of the current OF switch. In what
follows, we describe the details of ECS.

2. ECS
The entropy calculation is a concept of information

theory [18] which measures the disorder/randomness of
incoming data (i.e., the incoming flow for a given time
period). ECS runs as an application on the top of the
controller and uses sFlow protocol; it collects traffic
information and computes the entropy of each OF Edge
switch. When the network of blockchain nodes is under
attack, the number of packets that have the same 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 towards a specific blockchain node will increase causing a
concentrated distribution of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. High entropy values
mean more dispersed probability distribution of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,
while low entropy values mean the concentration of
distribution of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. Therefore, we use ECS to measure
the changes of traffic information during a monitoring
interval ∆𝑇𝑇. A flow is characterized by a sequence of
packets which have similar properties reaching the same
OF Edge switch for a given period of time.

In our work, we define a flow as a seven-
 tuple: { 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡 ,𝑚𝑚𝑖𝑖𝑡𝑡𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡 =
53,𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑠𝑠 = 𝑈𝑈𝑈𝑈𝑈𝑈} .We denote an input flow on a local OF
Edge switch by <𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j, 𝑡𝑡 >, we use 𝐼𝐼 as the set of
positive integers, 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼 and 𝑡𝑡 ∈ 𝑅𝑅. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the source
address of the 𝑖𝑖𝑡𝑡ℎ input flow of the 𝑗𝑗𝑡𝑡ℎ OF Edge switch 𝐸𝐸𝐸𝐸j
, and t is the current timestamp. We denote by
𝐸𝐸𝐸𝐸 = {E𝐸𝐸j, 𝑗𝑗 ∈ 𝐼𝐼 } the set of the OF Edge switches. Thus,
an input flow at OF Edge switch can be described as
follows:

𝐹𝐹𝑖𝑖,𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j) = {<𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j, 𝑡𝑡 >|𝐸𝐸𝐸𝐸j ∈ E𝐸𝐸 , 𝑖𝑖, 𝑗𝑗 ∈
𝐼𝐼, 𝑡𝑡 ∈ 𝑅𝑅}. (1)

We set |𝐹𝐹𝑖𝑖,𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j, 𝑡𝑡)| as the count number of
packets of the input flow 𝐹𝐹𝑖𝑖,𝑗𝑗 at time 𝑡𝑡 . The variation of
the number of packets of each flow during the interval ∆𝑇𝑇
can be expressed as follows:

𝑁𝑁𝐹𝐹i,j�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j, 𝑡𝑡 + ∆𝑇𝑇� =�𝐹𝐹𝑖𝑖,𝑗𝑗�𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j, 𝑡𝑡 + ∆𝑇𝑇 ��-
 |𝐹𝐹𝑖𝑖,𝑗𝑗(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝐸𝐸𝐸𝐸j, 𝑡𝑡)| (2)

ECS counts periodically the entropy values of each OF
Edge switch separately.

We set the vector X={X1, X2, X3 … … . Xn } as the count
number of flows per 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 during monitoring interval ∆𝑇𝑇
reaching each OF Edge switch. Xk represents the number
of incoming flow for the 𝑘𝑘𝑡𝑡ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. The variation of the
number of packets for 𝑘𝑘𝑡𝑡ℎ flow during ∆𝑇𝑇 can be
expressed as follows:

 Xk = ��𝑁𝑁𝐹𝐹i,j[𝐼𝐼𝑈𝑈𝑘𝑘 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] (3)
∞

𝑗𝑗=1

∞

𝑖𝑖=1

We use the density of each IP address to estimate its
probability as follows:

 Pk =
Xk

∑ Xk𝑁𝑁
𝑘𝑘=1

 (4)

Pk gives the probability distribution of 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
address IPk during ∆𝑇𝑇. Then, we get the probability
distribution of each source 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 among the different IP
addresses, 𝑈𝑈 = {𝑖𝑖1,𝑖𝑖2,𝑖𝑖3,𝑖𝑖4 … …𝑖𝑖𝑁𝑁}, and ∑ 𝑈𝑈𝑘𝑘 𝑁𝑁

𝑘𝑘=1 =1.

We calculate the entropy of 𝑗𝑗𝑡𝑡ℎ OF Edge switch 𝐸𝐸𝐸𝐸j,
during ∆𝑇𝑇, as follows::

H(𝐸𝐸𝐸𝐸j) = −𝔼𝔼�log2 Pk�𝐸𝐸𝐸𝐸j��

= −� Pklog2 Pk (5)
𝑁𝑁

𝑘𝑘=1

 0 ≤ 𝐻𝐻(E𝐸𝐸𝑗𝑗) ≤ 𝑙𝑙𝑠𝑠𝑙𝑙2 𝑁𝑁 (6)

In order to normalize the entropy values, we divide the
entropy values by the maximum value which is 𝑙𝑙𝑠𝑠𝑙𝑙2 𝑁𝑁.
Therefore, the normalized entropy values will be in [0, 1]
and will be as follows:

 𝐻𝐻
′(𝐸𝐸𝐸𝐸𝑗𝑗) =

 𝐻𝐻(𝐸𝐸𝐸𝐸𝑗𝑗)
𝑙𝑙𝑠𝑠𝑙𝑙2 𝑁𝑁

 (7)

We divide the state of the network into normal state and
abnormal state. Let 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛(𝐸𝐸𝐸𝐸j) and 𝐻𝐻𝑎𝑎𝑎𝑎𝑛𝑛(E𝐸𝐸j) denote the
entropy value of OF Edge switch 𝐸𝐸𝐸𝐸j in the normal state
and abnormal state, respectively. 𝐻𝐻𝑎𝑎𝑎𝑎𝑛𝑛(𝐸𝐸𝐸𝐸j) decreases
when the blockchain nodes network is under attack. On the
other hand, 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛(𝐸𝐸𝐸𝐸j) is stable during the monitoring
interval. Let 𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗� be the mean entropy of 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛(𝐸𝐸𝐸𝐸j) for
the OF Edge switch 𝐸𝐸𝐸𝐸𝑗𝑗 and 𝛿𝛿 be an adaptive threshold; if
the current flow satisfies inequality (8) at least β times in
the last µ monitoring intervals (of ∆𝑇𝑇), ECS triggers the
occurrence of the attack. Afterwards, the flow where
distribution of its 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is more concentrated will be
classified as illegitimate. Otherwise, it is considered as a
normal flow.

 |𝐻𝐻𝑎𝑎𝑎𝑎𝑛𝑛(𝐸𝐸𝐸𝐸j)- 𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗�| < 𝛿𝛿 (8)

To make ECS adaptive, we let the mean 𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗� and
threshold 𝛿𝛿 adaptive to change of network traffic; Then,
𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗� and 𝛿𝛿 will be adapted according to the current
normal state of the network and not to a prefixed threshold.
We calculate the weighted mean value of 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛(𝐸𝐸𝐸𝐸j) as
follows:

𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗�=∑ 𝛼𝛼𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛�𝐸𝐸𝐸𝐸j�[𝑖𝑖], ∑ 𝛼𝛼𝑖𝑖𝑛𝑛

𝑖𝑖=1 =1 (9)

Where 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1,2, … .𝑛𝑛 represent the weights for the 𝑛𝑛
past flows. The standard deviation of 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛�𝐸𝐸j� can be
calculated as follows

𝜎𝜎=� 1
𝑛𝑛

 ∑ �𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛�𝐸𝐸𝐸𝐸j�
𝑖𝑖 − 𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗��

𝑛𝑛
𝑖𝑖=1

2
 (10)

Afterwards, we compute the new threshold 𝛿𝛿 as
follows:

 𝛿𝛿=𝜃𝜃.𝜎𝜎 (11)

Where 𝜃𝜃 is a multiplicative factor. Each of these
parameters (𝔼𝔼�𝐸𝐸𝐸𝐸𝑗𝑗�,𝜎𝜎) will be initiated according to the
initial normal state of the network. Fig.5 shows the
workflow of ECS. First, the proposed ECS application
defines address groups, and flows, and initializes the
threshold parameters∶ 𝔼𝔼�𝐸𝐸𝐸𝐸j�, δ, n, µ,β,𝜃𝜃 and the
monitoring interval ∆T. Afterwards, during each∆T, ECS
calculates the entropy value and checks whether the
inequality (8) is satisfied at least β times in the last µ
monitoring intervals (of ∆𝑇𝑇), then ECS triggers the
occurrence of the attack and DDM (see VI) blocks
illegitimate DNS requests. In the following, we describe
our mitigation module.

 Fig.5. Workflow of ECS

VI.DNS DDOS MITIGATION(DDM) MODULE
Finally, mitigation action is elaborated to protect

blockchain nodes. Once ECS triggers the occurrence of the
attack, new flow rules are installed using API of the
controller through OpenFlow functionalities into the OF
switch under attacks with a high priority to match
suspicious packets and monitor their speed. DDM has the
purpose to effectively mitigate illegitimate DNS requests.
A flow entry can specify a meter; meter entries with
different Meter_id are deployed to monitor the speed of
DNS requests of the classified illegitimate flows by ECS; if
the packet rate surpasses the band, then we drop suspects
packets (rate limiter). The table model in OF switches in
our study is illustrated in the following figure (Fig.6).

 Fig. 6. Table Model in OF switches

VII.EXPERIMENTAL VALIDATION
In this section, we present the experimentation

validation of the ChainSecure. First, we introduce the
experimental environment. Then, we evaluate the
performance of ECS.

A. Experimental Environment

 Fig.7. Experimental Environment

 Virtual network topology is implemented with
Mininet [19] in order to simulate a real network
environment. Mininet uses Linux containers and
OpenvSwitch to allow realistic virtual networks of hosts
and switches to be constructed using a virtual machine.
StateMap is implemented in OpenvSwitch. While, ECS is
running as an application on the top of the controller and
using sFlow protocol ECS collects traffic information and
detects automatically illegitimate flows. Then, mitigation
action is elaborated to block illegitimate flows. The
experimental environment, consists of (1) an OpenFlow
controller (i.e., Floodlight[20]) which offers elementary
connectivity which can be canceled using the Static Flow
Pusher API; (2) an sFlow network monitor (i.e., sFlow-
RT), which is a the sFlow collector that can perform
monitoring of 7500 switch ports in a data center network;
(3) a REST application to perform the anomaly detection
scheme(ECS); (4) 6 OF switches, the bandwidth of each
link is set to 1 Gbps. Each OpenFlow network contains
more than 20 hosts; multiple hosts are simulated to launch
the attack and other hosts are legitimate blockchain nodes
executing blockchain application and (5) multiple hosts in
our topology are simulated to act as Open Resolver and
send amplified DNS responses. The rates of the attack are
changed from 50 to 500 Mbps in the objective to test the
scalability of our proposed solution in large scale, the
sampling rate in sFlow is 1/64. For the attack script, Scapy's
Python library [21] module of Python is used to forge DNS
queries in large amounts. NodeJs [22] is used to create the
DNS test server using dnsd package. The server is
implemented to send large DNS records as responses to the
victim. The experiment results are presented as follows:
Without ChainSecure, the blockchain node is flooded by
illegitimate DNS responses as illustrated in the bottom of
Fig.8. After deploying of ChainSecure, we re-launched the
attack. The capturing with Tcpdump in the top of Fig. 8
shows that the blockchain node (victim) does not receives
any illegitimate traffic. As shown in Fig. 9, thanks to
StateMap, we can also maintain the bandwidth resources of
node of the blockchain. Even if the attack rate reaches 2000
packets per second (pps) the bandwidth still keeps almost
12 Mbps; however, without ChainSecure, the bandwidth
decreases sharply, which means that the blockchain node is
flooded with illegitimate traffic. Fig. 10 illustrates that
when the controller is disabled, the traffic attack sustains
over 2000 DNS requests per second. However, when the
controller is enabled, the traffic of DNS requests is stopped
when ECS classifies the flow as illegitimate. ECS instructs
the controller which communicates with the switches to
mitigate the DDoS traffic, the time taken by the detection
and mitigation operations is less than 13 seconds as shown
in Fig. 11.To examine our proposed ECS, we simulate our
attack within an interval of 250 s. We launch the attack
during the interval of 150-200s.We can see in Fig. 12 that
the normalized entropy values decrease rapidly.

Fig.8. Capture on node's network with Fig.9.Victim node’s netwrok Bandwidth Fig.10. DNS request’s flow traffic

 and Witouh ChainSecure. before and after enabling control

 Fig.11. attack mitigation Fig.12.Normalized entropy value of Ipsrc flow Fig.13. ROC curves for the 100/

 500 Mbps cases .

B. Performance Evaluaion
 To measure the performance of ECS, we define the
Detection Rate (DR) and false positive Rate (FPR) as follows:

𝑈𝑈𝑅𝑅 =
𝑇𝑇𝑈𝑈

𝑇𝑇𝑈𝑈 + 𝐹𝐹𝑁𝑁
,𝐹𝐹𝑈𝑈𝑅𝑅 =

𝐹𝐹𝑈𝑈

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑈𝑈

 Where, TP (True Positives) represents the illegitimate
flow that are correctly identified as illegitimate, while FN
(False Negatives) represents the illegitimate flow that are
classified as legitimate. Therefore, DR represents the attack
detection rate, FP (False Positives) represents the legitimate
flow that are identified as illegitimate, while TN (True
Negatives) represents the legitimate flows that are classified
as legitimate. The Receiver Operating Characteristic (ROC)
curves represent the trade-off between DR and FPR. In the
experiment we set ∆𝑇𝑇 as 5s, β is set 2 and µ is 3. As shown in
Fig.13, we can see that ECS achieves around 100% detection
rate while it has approximately 30% of false positive ratio for
both 100 and 500 Mbps. ECS works well in 500 Mbps as we
observe a high rate of traffic which leads to a more
randomized traffic.

VIII.CONSLUSION
 This paper discussed security threats of Consortium and

fully private blockchains. Because of the small number of
peers (nodes) on the blockchain, specific nodes can be targets
of DDoS attacks. In order to protect the blockchain nodes
from DNS amplification attacks, we proposed a scalable and
proactive solution in the context of SDN, named
ChainSecure. First, we described a novel stateful mapping
scheme that allows OpenFlow switches to be smart enough to
secure blockchain nodes from DNS amplification attacks.
Then, we proposed a real-time detection scheme called ECS.
Finally, a mitigation action is elaborated to block illegitimate
flows. For future work, we intend to improve precision of our
ECS by using a machine learning methods.

REFERENCES
[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] EthereumFoundation. [Online] Available: https://www.ethereum.org/.
[3] Blockchain for business. [Online] Available: https://www.r3.com/.
[4] Hongyu Gao, Vinod Yegneswaran, Jian Jiang, Yan Chen, Phillip

Porras, Shalini Ghosh, and Haixin Duan,“ Reexamining DNS From a
Global Recursive Resolver Perspective”, IEEE Transactions on
Networking ,Vol. 24, No. 1,February 2016.

[5] “DNS”,”http://dns.measurement-factory.com/surveys/sum1.html.
[6] S. Agarwal, M. Kodialam, and T. V. Lakshman, “Traffic engineering

in software defined networks,” in Proc. IEEE INFOCOM,2013.
[7] Reza Mohammadi, Reza Javidan, and Mauro Conti, “SLICOTS: An

SDN-Based Lightweight Countermeasure for TCP SYN Flooding
Attacks”, IEEE Transactions on Network and Service
Management,Vol. 14, No. 2,June 2017.

[8] Yan, Q., Yu, F.R., Gong, Q., and Li, J.,‘Software-defined networking
(SDN) and distributed denial of service (DDoS) attacks in cloud
computing environments: a survey, some research issues, and
challenges’, IEEE Commun. Surv. Tutor., 18, pp. 602–622, 2016.

[9] Mathis Steichen, Stefan Hommes and Radu State,” ChainGuard - A
Firewall for Blockchain Applications using SDN with OpenFlow”,
IPTComm, 2017.

[10] Wang R, Jia Z, Ju L. An Entropy-Based Distributed DDoS Detection
Mechanism in Software-Defined Networking. IEEE
Trustcom/BigDataSE/ISPA. 2015:310-317.

[11] C. Sun, B. Liu, and L. Shi, "Efficient and low-cost hardware defense
against DNS amplification attacks," in Global Telecommunications
Conference, pp. 1-5. IEEE GLOBECOM ,2008.

[12] F. Guo, J. Chen, and T. Chiueh, “Spoof detection for preventing DoS
attacks against DNS servers,” in IEEE ICDCS, 2006, pp. 37–37.

[13] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, "A fair
solution to DNS amplification attacks",Digital Forensics and Incident
Analysis. Second International Workshop on. IEEE, pp. 38-47, 2007.

[14] Zaalouk, A., R. Khondoker, R. Marx and K, Bayarou. “OrchSec: An
Orchestrator-Based Architecture For Enhancing Network-Security
Using Network Monitoring And SDN Control Functions”. Network
Operations and Management Symposium, May 5-9, 2014.

[15] P. Phaal ,”https://www.ietf.org/rfc/rfc3176.txt”,2001.
[16] “REST API”,” http://www.sflow-rt.com/reference.php”.
[17] “sFlow-RT”, http://www.sflow-rt.com”.
[18] H.J. Landau,J.E. Mazo,S. Shamai,” Shannon theory: perspective,

trends, and applications special issue dedicated to aaron d. wyner”,
IEEE Transactions on Information Theory,2002.

[19] Mininet. [Online] Available: http://mininet.org.
[20] Floodlight. [Online] Available:http://www.projectfloodlight.org/ .
[21] Scapy,”http://www.secdev.org/projects/scapy “.
[22] NodeJs,” “Nodejs”, “https://nodejs.org/en//”.

http://dns.measurement-factory.com/surveys/sum1.html
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8123822
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18
https://nodejs.org/en/

	I. Introduction
	A. Overview
	B. Description of DNS amplification attacks

	II. Related work
	III. SYSTEM DESIGN
	A. Design Overview
	B. System Architecture

	IV. stateful mapping scheme (StateMap)
	V. Entropy calculation scheme (ECS)
	VI. DNS DDoS mitigation(DDM) module
	VII. Experimental Validation
	A. Experimental Environment
	B. Performance Evaluaion

	VIII. CONSLUSION
	References

